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auctions: uniform price double auctions conducted, for example, every tenth of a
second. That is, time should be treated as discrete instead of continuous, and
orders should be processed in a batch auction instead of serially. Our argument
has three parts. First, we use millisecond-level direct-feed data from exchanges to
document a series of stylized facts about how the continuous market works at
high-frequency time horizons: (i) correlations completely break down; which (ii)
leads to obvious mechanical arbitrage opportunities; and (iii) competition has not
affected the size or frequency of the arbitrage opportunities, it has only raised the
bar for how fast one has to be to capture them. Second, we introduce a simple
theory model which is motivated by and helps explain the empirical facts. The
key insight is that obvious mechanical arbitrage opportunities, like those
observed in the data, are built into the market design—continuous-time serial-
processing implies that even symmetrically observed public information creates
arbitrage rents. These rents harm liquidity provision and induce a never-ending
socially wasteful arms race for speed. Last, we show that frequent batch auctions
directly address the flaws of the continuous limit order book. Discrete time
reduces the value of tiny speed advantages, and the auction transforms compe-
tition on speed into competition on price. Consequently, frequent batch auctions
eliminate the mechanical arbitrage rents, enhance liquidity for investors, and
stop the high-frequency trading arms race. JEL Codes: D47, D44, D82, G10,
G14, G20.

I. Introduction

In 2010, Spread Networks completed construction of a new
high-speed fiber optic cable connecting financial markets in New
York and Chicago. Whereas previous connections between the
two financial centers zigzagged along railroad tracks, around
mountains, etc., Spread Networks’ cable was dug in a nearly
straight line. Construction costs were estimated at $300 million.
The result of this investment? Round-trip communication time
between New York and Chicago was reduced . . . from 16 millisec-
onds to 13 milliseconds. Three milliseconds may not seem like
much, especially relative to the speed at which fundamental in-
formation about companies and the economy evolves. (The blink
of a human eye lasts 400 milliseconds; reading this parenthetical
took roughly 3,000 milliseconds.) But industry observers re-
marked that 3 milliseconds is an ‘‘eternity’’ to high-frequency
trading (HFT) firms, and that ‘‘anybody pinging both markets
has to be on this line, or they’re dead.’’ One observer joked at
the time that the next innovation will be to dig a tunnel, speeding
up transmission time even further by ‘‘avoiding the planet’s pesky
curvature.’’ Spread Networks may not find this joke funny anymore,
as its cable is already obsolete. While tunnels have yet to material-
ize, a different way to get a straighter line from New York to Chicago
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is to use microwaves rather than fiber optic cable, since light travels
faster through air than through glass. Since its emergence in
around 2011, microwave technology has reduced round-trip trans-
mission time first to around 10 milliseconds, then 9 milliseconds,
then 8.5 milliseconds, and most recently to 8.1 milliseconds.
Analogous speed races are occurring throughout the financial
system, sometimes measured at the level of microseconds (mil-
lionths of a second) and even nanoseconds (billionths of a second).1

We argue that the high-frequency trading arms race is a symp-
tom of a basic flaw in the design of modern financial exchanges:
continuous-time trading. That is, under the continuous limit order
book market design that is currently predominant, it is possible to
buy or sell stocks or other exchange-traded financial instruments at
any instant during the trading day.2 We propose a simple alterna-
tive: discrete-time trading. More precisely, we propose a market
design in which the trading day is divided into extremely frequent
but discrete time intervals; to fix ideas, say, 100 milliseconds. All
trade requests received during the same interval are treated as
having arrived at the same (discrete) time. Then, at the end of
each interval, all outstanding orders are processed in batch,
using a uniform-price auction, as opposed to the serial processing
that occurs in the continuous market. We call this market design
frequent batch auctions. Our argument against continuous limit
order books and in favor of frequent batch auctions has three parts.

The first part uses millisecond-level direct-feed data from
exchanges to document a series of stylized facts about continuous
limit order book markets. Together, the facts suggest that contin-
uous limit order book markets violate basic asset pricing princi-
ples at high-frequency time horizons—that is, the continuous
market does not actually ‘‘work’’ in continuous time. Consider
Figure I. The figure depicts the price paths of the two largest
financial instruments that track the S&P 500 index, the SPDR
S&P 500 exchange traded fund (ticker SPY) and the S&P 500
E-mini futures contract (ticker ES), on a trading day in 2011. In

1. Sources for this paragraph: Steiner (2010); Najarian (2010); Conway (2011);
Troianovski (2012); Adler (2012); Bunge (2013); Laughlin, Aguirre, and Grundfest
(2014); McKay Brothers Microwave Latencies Table, January 20, 2015 (http://www.
mckay-brothers.com/product-page/#latencies), Aurora-Carteret route.

2. Computers do not literally operate in continuous time; they operate in dis-
crete time in increments of about 0.3 nanosecond. More precisely, what we mean by
continuous time is as-fast-as-possible discrete time plus random serial processing of
orders that reach the exchange at the exact same discrete time.
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FIGURE I

ES and SPY Time Series at Human-Scale and High-Frequency Time Horizons

This figure illustrates the time series of the E-mini S&P 500 future (ES)
and SPDR S&P 500 ETF (SPY) bid-ask midpoints over the course of a trading
day (August 9, 2011) at different time resolutions: the full day (a), an hour (b), a
minute (c), and 250 milliseconds (d). SPY prices are multiplied by 10 to reflect
that SPY tracks 1

10 the S&P 500 Index. Note that there is a difference in levels
between the two financial instruments due to differences in cost-of-carry, divi-
dend exposure, and ETF tracking error; for details see Section V.B. For details
regarding the data, see Section IV.

(continued)
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FIGURE I

Continued
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Panel A, we see that the two instruments are nearly perfectly
correlated over the course of the trading day, as we would
expect given the near-arbitrage relationship between them.
Similarly, the instruments are nearly perfectly correlated over
the course of an hour (Panel B) or a minute (Panel C). However,
when we zoom in to high-frequency time scales, in Panel D, we see
that the correlation breaks down. Over all trading days in 2011,
the median return correlation is just 0.1016 at 10 milliseconds and
0.0080 at 1 millisecond.3 This correlation breakdown in turn leads
to obvious mechanical arbitrage opportunities, available to who-
ever is fastest. For instance, at 1:51:39.590 PM, after the price of ES
has just jumped roughly 2.5 index points, the arbitrage opportu-
nity is to buy SPY and sell ES.

The usual economic intuition about obvious arbitrage oppor-
tunities is that once discovered, competitive forces eliminate the
inefficiency. But that is not what we find here. Over the time
period of our data, 2005–2011, we find that the duration of ES-
SPY arbitrage opportunities declines dramatically, from a
median of 97 milliseconds in 2005 to a median of 7 milliseconds
in 2011. This reflects the substantial investments by HFT firms in
speed during this time period. But we also find that the profit-
ability of ES-SPY arbitrage opportunities is remarkably constant
throughout this period, at a median of about 0.08 index points per
unit traded. The frequency of arbitrage opportunities varies con-
siderably over time, but its variation is driven almost entirely by
variation in market volatility. These findings suggest that while
there is an arms race in speed, the arms race does not actually
affect the size of the arbitrage prize; rather, it just continually
raises the bar for how fast one has to be to capture a piece of the
prize. A complementary finding is that the number of millisec-
onds necessary for economically meaningful correlations to
emerge has been steadily decreasing over the time period 2005–
2011; but in all years, correlations are essentially zero at high-

3. There are some subtleties involved in calculating the 1 millisecond correlation
between ES and SPY, since it takes light roughly 4 milliseconds to travel between
Chicago (where ES trades) and New York (where SPY trades), and this represents a
lower bound on the amount of time it takes information to travel between the two
markets (Einstein 1905). Whether we compute the correlation based on New York
time (treating Chicago events as occurring 4 milliseconds later in New York than
they do in Chicago), based on Chicago time, or ignore the theory of special relativity
and use SPY prices in New York time and ES prices in Chicago time, the correlation
remains essentially zero. See Section V and Online Appendix A.1 for further details.
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enough frequency. Overall, our analysis suggests that the me-
chanical arbitrage opportunities and resulting arms race should
be thought of as a constant of the market design, rather than as
an inefficiency that is competed away over time.

We compute that the total prize at stake in the ES-SPY race
averages $75 million per year. And, of course, ES-SPY is just a
single pair of financial instruments—there are hundreds if not
thousands of other pairs of highly correlated instruments, and, in
fragmented equity markets, arbitrage trades that are even sim-
pler, since the same stock trades on multiple venues. Although we
hesitate to put a precise estimate on the total size of the prize in
the speed race, commonsense extrapolation from our ES-SPY es-
timates suggests that the sums are substantial.

The second part of the article presents a simple new theory
model which is motivated by and helps explain and interpret
these empirical facts. The model serves as a critique of the con-
tinuous limit order book market design, and it articulates the
economics of the HFT arms race. In the model, there is a security,
x, that trades on a continuous limit order book, and a public signal
of x’s value, y. We make a purposefully strong assumption about
the relationship between x and y: the fundamental value of x is
perfectly correlated to the public signal y. Moreover, we assume
that x can always be costlessly liquidated at its fundamental
value, and initially assume away all latency for trading firms
(aka HFTs, market makers, algorithmic traders). This setup
can be interpreted as a ‘‘best-case’’ scenario for price discovery
and liquidity provision in a continuous limit order book, assuming
away asymmetric information, inventory costs, etc.

Given that we have eliminated the traditional sources of
costly liquidity provision, one might expect that Bertrand compe-
tition among trading firms leads to costless liquidity for investors
and zero rents for trading firms. But consider the mechanics of
what happens in the market for x when the public signal y
jumps—the moment at which the correlation between x and y
temporarily breaks down. For instance, imagine that x represents
SPY and y represents ES, and consider what happens at
1:51:39.590 PM in Figure I, Panel D, when the price of ES has
just jumped. At this moment, trading firms providing liquidity
in the market for x will send a message to the exchange to
adjust their quotes—cancel their stale quotes and replace them
with updated quotes based on the new value of y. At the exact
same time, however, other trading firms will try to ‘‘snipe’’ the
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stale quotes—send a message to the exchange attempting to buy x
at the old ask, before the liquidity providers can adjust. Since the
continuous limit order book processes message requests in serial
(i.e., one at a time in order of receipt), it is effectively random
whose request is processed first. And, to avoid being sniped,
each one of the liquidity provider’s request to cancel has to get
processed before all of the other trading firms’ requests to snipe
her stale quotes; hence, if there are N trading firms, each liquidity
provider is sniped with probability N�1

N . This shows that trading
firms providing liquidity, even in an environment with only sym-
metric information and with no latency, still get sniped with high
probability because of the rules of the continuous limit order book.
The obvious mechanical arbitrage opportunities we observed in
the data are in a sense ‘‘built in’’ to the market design: continu-
ous-time serial-processing creates arbitrage rents from symmet-
rically observed public information.

These arbitrage rents increase the cost of liquidity provision.
In a competitive market, trading firms providing liquidity incor-
porate the cost of getting sniped into the bid-ask spread that they
charge; so there is a positive bid-ask spread even without asym-
metric information about fundamentals. Similarly, sniping
causes the continuous limit order book market to be thin; that
is, it is especially expensive for investors to trade large quantities
of stock. The reason is that sniping costs scale linearly with the
quantity liquidity providers offer in the book—if quotes are stale,
they will get sniped for the whole amount. Whereas the benefits of
providing a deep book scale less than linearly—since only some
investors wish to trade large amounts.4,5

4. Our source of costly liquidity provision should be viewed as incremental to
the usual sources of costly liquidity provision: inventory costs (Demsetz 1968; Stoll
1978), asymmetric information (Copeland and Galai 1983; Glosten and Milgrom
1985; Kyle 1985), and search costs (Duffie, Garleanu, and Pedersen 2005).
Mechanically, our source of costly liquidity provision is most similar to that in
Copeland and Galai (1983) and Glosten and Milgrom (1985)—we discuss the rela-
tionship in detail in Section VI.C. Note too that while our model is extremely styl-
ized, one thing we do not abstract from is the rules of the continuous limit order book
itself, whereas Glosten and Milgrom (1985) and subsequent market microstructure
analyses of limit order book markets use a discrete-time sequential-move modeling
abstraction of the continuous limit order book. This abstraction is innocuous in the
context of these prior works, but it precludes a race to respond to symmetrically
observed public information as in our model.

5. A point of clarification: our claim is not that markets are less liquid today
than before the rise of electronic trading and HFT; the empirical record is clear that
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These arbitrage rents also induce a never-ending speed race.
We modify our model to allow trading firms to invest in a simple
speed technology, which allows them to observe innovations in y
faster than trading firms who do not invest. With this modifica-
tion, the arbitrage rents lead to a classic prisoner’s dilemma:
snipers invest in speed to try to win the race to snipe stale
quotes; liquidity providers invest in speed to try to get out of
the way of the snipers; and all trading firms would be better off
if they could collectively commit not to invest in speed, but it is in
each firm’s private interest to invest. Notably, competition in
speed does not fix the underlying problem of mechanical arbi-
trages from symmetrically observed public information. The
size of the arbitrage opportunity, and hence the harm to inves-
tors via reduced liquidity, depends neither on the magnitude of
the speed improvements (be they milliseconds, microseconds,
nanoseconds, etc.), nor on the cost of cutting-edge speed technol-
ogy (if speed costs get smaller over time there is simply more
entry). The arms race is thus an equilibrium constant of the
market design—a result that ties in closely with our empirical
findings.

The third and final part of our article shows that frequent
batch auctions directly address the problems we have identified
with the continuous limit order book. Frequent batch auctions
may sound like a very different market design from the continu-
ous limit order book, but there are really just two differences.
First, time is treated as a discrete variable instead of a continuous
variable.6 Second, orders are processed in batch instead of
serial—since multiple orders can arrive at the same (discrete)
time—using a standard uniform-price auction. All other design
details are similar. For instance, orders consist of a price, quan-
tity, and direction and can be canceled or modified at any time;
priority is price then (discrete) time; there is a well-defined bid-
ask spread; and information policy is analogous: orders are

trading costs are lower today than in the pre-HFT era, though most of the benefits
appear to have been realized in the late 1990s and early 2000s (see Virtu 2014, p.
103; Angel, Harris, and Spatt 2015, p. 23; Frazzini, Israel, and Moskowitz 2012,
table IV). Rather, our claim is that markets are less liquid today than they would be
under an alternative market design that eliminated sniping. For further discussion
see Section VI.E.

6. This article does not characterize a specific optimal batch interval. See
Section VII.D and Online Appendix B.3 for a discussion of what the present
paper’s analysis does and does not teach us about the optimal batch interval.
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received by the exchange, processed by the exchange (at the end
of the discrete time interval, as opposed to continuously), and
only then announced publicly.

Together, the two key design differences—discrete time,
and batch processing using a uniform-price auction—have two
beneficial effects. First, discrete time substantially reduces the
value of a tiny speed advantage, which eliminates the arms
race. In the continuous-time market, if one trader is even 100
microseconds faster than the next, then any time there is a
public price shock the faster trader wins the race to respond.
In the discrete-time market, such a small speed advantage
almost never matters. Formally, if the batch interval is �,
then a � speed advantage is only �

� as likely to matter as in
the continuous-time market. So, if the batch interval is 100
milliseconds, then a 100 microsecond speed advantage is 1

1000
as important. Second, and more subtly, the auction eliminates
sniping by transforming the nature of competition. In the con-
tinuous market, it is possible to earn a rent based on a piece of
information that many traders observe at basically the same
time (e.g., a jump in ES), because orders are processed in
serial and someone is always first. In the frequent batch auc-
tion market, by contrast, if multiple traders observe the same
information at the same time, they are forced to compete on
price instead of speed. It is no longer possible to earn a rent
from symmetrically observed public information.

For both of these reasons, frequent batch auctions eliminate
the cost of liquidity provision in continuous limit order book mar-
kets associated with stale quotes getting sniped. Intuitively, dis-
crete time reduces the likelihood that a tiny speed advantage
yields asymmetric information, and the auction ensures that
symmetric information does not generate arbitrage rents.
Batching also resolves the prisoner’s dilemma caused by the con-
tinuous market, and in a manner that allocates the welfare sav-
ings to investors. In equilibrium, relative to the continuous limit
order book, frequent batch auctions eliminate sniping, enhance
liquidity, and stop the HFT arms race.

We emphasize that the market design perspective we take in
this article sidesteps the ‘‘is HFT good or evil?’’ debate which
seems to animate much of the current discussion about HFT
among policy makers, the press, and market microstructure re-
searchers. The market design perspective assumes that market
participants optimize with respect to market rules as given, but
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takes seriously the possibility that the rules themselves are
flawed. Many of the negative aspects of HFT that have garnered
so much public attention are best understood as symptoms of
flawed market design. However, the policy ideas that have been
most prominent in response to concerns about HFT—for example,
Tobin taxes, minimum resting times, message limits—attack
symptoms rather than address the root market design flaw: con-
tinuous-time, serial-process trading. Frequent batch auctions di-
rectly address the root flaw.

The rest of the article is organized as follows. Section II
discusses related literature. Section III briefly reviews the
rules of the continuous limit order book. Section IV describes
our direct-feed data from NYSE and the CME. Section V pre-
sents the empirical results on correlation breakdown and me-
chanical arbitrage. Section VI presents the model and solves
for and discusses the equilibrium of the continuous limit order
book. Section VII analyzes frequent batch auctions, shows
why they directly address the problems with the continuous
market, and discusses their equilibrium properties. Section
VIII uses our model to discuss alternative proposed responses
to the HFT arms race. Section IX discusses computational
advantages of discrete-time trading over continuous-time trad-
ing. Section X concludes. Online Appendix A provides backup
materials for the empirical analysis. Online Appendix B pro-
vides proofs and other backup materials for the theoretical
analysis.

II. Related Literature

First, there is a well-known older academic literature on in-
frequent batch auctions, for instance, three times per day (open,
midday, and close). Important contributions to this literature in-
clude Cohen and Schwartz (1989), Madhavan (1992), and
Economides and Schwartz (1995); see also Schwartz (2001) for a
book treatment. We emphasize that the arguments for infrequent
batch auctions in this earlier literature are completely distinct
from the arguments we make for frequent batch auctions. Our
argument focuses on eliminating sniping, encouraging competi-
tion on price rather than speed, and stopping the arms race. The
earlier literature focused on enhancing the accuracy of price dis-
covery by aggregating the dispersed information of investors into
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a single price,7 and reducing intermediation costs by enabling
investors to trade with each other directly. Perhaps the simplest
way to think about the relationship between our work and this
earlier literature is as follows. Our work shows that there is a
discontinuous welfare and liquidity benefit from moving from
continuous time to discrete time—more precisely, from the con-
tinuous-time serial-process limit order book market to discrete-
time batch-process auctions. The earlier literature suggests that
there might be additional further benefits to greatly lengthening
the batch interval that are outside our model. But there are also
likely to be important costs to such lengthening that are outside
our model and outside the models of this earlier literature as well.
Developing a richer understanding of the costs of lengthening the
time between auctions is an important topic for future research.

We also note that our specific market design details differ
from those in this earlier literature, beyond simply the frequency
with which the auctions are conducted. Differences include infor-
mation policy, the treatment of unexecuted orders, and time pri-
ority rules; see Section VII.A for a full description.

Second, there are two recent papers, developed indepen-
dently and contemporaneously8 from ours and coming from
different methodological perspectives, that also make cases for
frequent batch auctions. Closest in spirit is Farmer and
Skouras (2012), a policy paper commissioned by the UK
Government’s Foresight Report. They, too, argue that continuous
trading leads to an arms race for speed, and that frequent batch
auctions stop the arms race. There are three substantive differ-
ences between our arguments. First, two conceptually important
ideas that come out of our formal model are that arbitrage rents
are built in to the continuous limit order book market design, in
the sense that even symmetrically observed public information
creates arbitrage opportunities due to serial processing, and that
the auction eliminates these rents by transforming competition
on speed into competition on price. These two ideas are not iden-
tified in Farmer and Skouras (2012). Second, the details of our
proposed market designs are substantively different. Our theory

7. In Economides and Schwartz (1995), the aggregation is achieved by con-
ducting the auction at three significant points during the trading day (open,
midday, and close). In Madhavan (1992) the aggregation is achieved by waiting
for a large number of investors with both private- and common-value information to
arrive to market.

8. We began work on this project in October 2010.

QUARTERLY JOURNAL OF ECONOMICS1558

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/130/4/1547/1916146 by guest on 10 April 2024



identifies the key flaws of the continuous limit order book and
shows that these flaws can be corrected by modifying only two
things: time is treated as discrete instead of continuous, and
orders are processed in batch using an auction instead of serially.
Farmer and Skouras (2012) depart more dramatically from the
continuous limit order book, demarcating time using an expo-
nential random variable and entirely eliminating time-based
priority.9 Last, a primary concern of Farmer and Skouras
(2012) is market stability, a topic we touch on only briefly in
Section IX. Wah and Wellman (2013) make a case for frequent
batch auctions using a zero-intelligence (i.e., non–game theoretic)
agent-based simulation model. In their simulation model, inves-
tors have heterogeneous private values (costs) for buying (selling)
a unit of a security, and use a mechanical strategy of bidding their
value (or offering at their cost). Batch auctions enhance efficiency
in their setup by aggregating supply and demand and executing
trades at the market-clearing price. Note that this is a similar
argument in favor of frequent batch auctions as that associated
with the older literature on infrequent batch auctions referenced
previously. The reason that this force pushes towards frequent
batch auctions in Wah and Wellman (2013) is that their simula-
tions utilize an extremely high discount rate of 6 basis points per
millisecond.

Third, our paper relates to the burgeoning academic litera-
ture on high-frequency trading; see Jones (2013), Biais and
Foucault (2014), and O’Hara (2015) for recent surveys. One
focus of this literature has been on the empirical study of the
effect of high-frequency trading on market quality, within the
context of the current market design. Examples include
Hendershott, Jones, and Menkveld (2011); Hasbrouck and Saar
(2013); Brogaard, Hendershott, and Riordan (2014a,b); Foucault,
Kozhan, and Tham (2014); and Menkveld and Zoican (2014). We
discuss the relationship between our results and aspects of this
literature in Section VI.E. Biais, Foucault, and Moinas (2015)
study the equilibrium level of investment in speed technology
in the context of a Grossman-Stiglitz style rational expectations

9. There have been several other white papers and essays making cases for
frequent batch auctions, which to our knowledge were developed independently
and roughly contemporaneously: Cinnober (2010); Sparrow (2012); McPartland
(2015); ISN (2013); Schwartz and Wu (2013). In each case, either the proposed
market design departs more dramatically from the continuous limit order book
than ours or important design details are omitted.
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model. They find that investment in speed can be socially exces-
sive, as we do in our model, and argue for a Pigovian tax on speed
technology as a policy response; see Section VIII.A for discussion
of the traditional Tobin tax and the Biais, Foucault, and Moinas
(2015) tax. The Nasdaq ‘‘SOES bandits’’ were an early incarna-
tion of stale-quote snipers, in the context of a part-human part-
electronic market design that had an unusual feature that was
exploited by the bandits—the prohibition of automated quote up-
dates, which necessitated costly and imperfect human monitor-
ing. See Foucault, Roell, and Sandas (2003) for a theoretical
analysis and Harris and Schultz (1998) for empirical facts.
Further discussion of other related work from this literature is
incorporated into the body of the article.

Fourth, this article is in the tradition of the academic litera-
ture on market design. This literature focuses on designing the
‘‘rules of the game’’ in real-world markets to achieve objectives
such as economic efficiency. Examples of markets that have been
designed by economists include auction markets for wireless
spectrum licenses and the market for matching medical school
graduates to residency positions. See Klemperer (2004) and
Milgrom (2004, 2011) for surveys of the market design literature
on auction markets and Roth (2002, 2008) for surveys on the
market design literature on matching markets. Some papers in
this literature that are conceptually related to ours, albeit focused
on different market settings, are Roth and Xing (1994) on the
timing of transactions, Roth and Xing (1997) on serial versus
batch processing, and Roth and Ockenfels (2002) on bid sniping.

Last, several of the ideas in our critique of the continuous
limit order book are new versions of classical ideas. Correlation
breakdown is an extreme version of a phenomenon first docu-
mented by Epps (1979); see Section V for further discussion.
Sniping, and its negative effect on liquidity, is closely related to
Glosten and Milgrom (1985) adverse selection; see Section VI.C,
which discusses this relationship in detail. The idea that financial
markets can induce inefficient speed competition traces at least to
Hirshleifer (1971); in fact, our model clarifies that in the contin-
uous market fast traders can earn a rent even from information
that they observe at exactly the same time as other fast traders,
which can be viewed as the logical extreme of what Hirshleifer
(1971) called ‘‘foreknowledge’’ rents.
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III. Brief Description of the Continuous Limit

Order Book

In this section we summarize the rules of the continuous
limit order book market design. Readers familiar with these
rules can skip this section. Readers interested in further details
should consult Harris (2002).

The basic building block of this market design is the
limit order. A limit order specifies a price, a quantity, and
whether the order is to buy or sell, for example, ‘‘buy 100
shares of XYZ at $100.00.’’ Traders may submit limit orders to
the market at any time during the trading day, and they may
fully or partially withdraw their outstanding limit orders at any
time.

The set of limit orders outstanding at any particular moment
is known as the limit order book. Outstanding orders to buy are
called bids and outstanding orders to sell are called asks. The
difference between the best (highest) bid and the best (lowest)
ask is known as the bid-ask spread.

Trade occurs whenever a new limit order is submitted that is
either a buy order with a price weakly greater than the current
best ask or a sell order with a price weakly smaller than the cur-
rent best bid. In this case, the new limit order is interpreted as
either fully or partially accepting one or more outstanding asks.
Orders are accepted in order of the attractiveness of their price,
with ties broken based on which order has been in the book the
longest; this is known as price-time priority. For example, if there
are outstanding asks to sell 1,000 shares at $100.01 and 1,000
shares at $100.02, a limit order to buy 1,500 shares at $100.02 (or
greater) would get filled by trading all 1,000 shares at $100.01,
and then by trading the 500 shares at $100.02 that have been in
the book the longest. A limit order to buy 1,500 shares at $100.01
would get partially filled, by trading 1,000 shares at $100.01, with
the remainder of the order remaining outstanding in the limit
order book (500 shares at $100.01).

Observe that order submissions and order withdrawals are
processed by the exchange in serial, that is, one at a time in order
of their receipt. This serial-processing feature of the continuous
limit order book plays an important role in the theoretical anal-
ysis in Section VI.

In practice, there are many other order types that traders
can use in addition to limit orders. These include market orders,
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stop-loss orders, immediate-or-cancel, and dozens of others that
are considerably more obscure (e.g., Patterson and Strasburg
2012; Nanex 2012). These alternative order types are ultimately
just proxy instructions to the exchange for the generation of limit
orders. For instance, a market order is an instruction to the ex-
change to place a limit order whose price is such that it executes
immediately, given the state of the limit order book at the time
the message is processed.

IV. Data

We use ‘‘direct-feed’’ data from the Chicago Mercantile
Exchange (CME) and New York Stock Exchange (NYSE).
Direct-feed data record all activity that occurs in an exchange’s
limit order book, message by message, with millisecond resolu-
tion timestamps assigned to each message by the exchange at the
time the message is processed.10 Practitioners who demand the
lowest latency data (e.g., high-frequency traders) use this direct-
feed data in real time to construct the limit order book.

The CME data set is called CME Globex DataMine Market
Depth. Our data cover all limit order book activity for the E-mini
S&P 500 Futures Contract (ticker ES) over the period of January
1, 2005–December 31, 2011. The NYSE data set is called TAQ
NYSE ArcaBook. While this data covers all U.S. equities traded
on NYSE, we focus most of our attention on the SPDR S&P 500
exchange traded fund (ticker SPY). Our data cover the period of
January 1, 2005–December 31, 2011, with the exception of a
three-month gap from 5/30/2007 to 8/28/2007 resulting from
data issues acknowledged to us by the NYSE data team. We
also drop, from both data sets, the Thursday and Friday from
the week prior to expiration for every ES expiration month
(March, June, September, December) due to the rolling over of
the front month contract, half days (e.g., day after Thanksgiving),
and a small number of days in which either data set’s zip file is
corrupted or truncated. We are left with 1,560 trading days in
total.

10. Prior to November 2008, the CME datafeed product did not populate the
millisecond field for time stamps, so the resolution was actually centisecond not
millisecond. CME recently announced that the next iteration of its datafeed product
will be at microsecond resolution.
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Each message in direct-feed data represents a change in the
order book at that moment in time. It is the subscriber’s respon-
sibility to construct the limit order book from this feed, maintain
the status of every order in the book, and update the internal
limit order book based on incoming messages. In order to inter-
pret raw data messages reported from each feed, we write a feed
parser for each raw data format and update the state of the order
book after every new message.

We emphasize that direct feed data are distinct from the con-
solidated feeds that aggregate data from individual exchanges. In
particular, the TAQ NYSE ArcaBook data set is distinct from the
more familiar TAQ NYSE Daily data set (sometimes simply re-
ferred to as TAQ), which is an aggregation of orders and trades
from all Consolidated Tape Association exchanges. The TAQ
data is comprehensive in regard to trades and quotes listed at
all participant exchanges, which includes the major electronic
exchanges BATS, NASDAQ, and NYSE and also small exchanges
such as the Chicago Stock Exchange. However, practitioners esti-
mate that the TAQ’s timestamps are substantially delayed relative
to the direct-feed data that comes directly from the exchanges (our
own informal comparisons confirm this; see also Ding, Hanna, and
Hendershott 2014). One source of delay is that the TAQ’s time-
stamps do not come directly from the exchanges’ order matching
engines. A second source of delay is the aggregation of data from
several different exchanges, with the smaller exchanges consid-
ered especially likely to be a source of delay. The key advantage
of our direct-feed data is that the time stamps are as accurate as
possible. In particular, these are the same data that HFT firms
subscribe to and process in real time to make trading decisions.

V. Correlation Breakdown and Mechanical Arbitrage

In this section we report two sets of stylized facts about how
continuous limit order book markets behave at high-frequency
time horizons. First, we show that correlations completely
break down at high-enough frequency. Second, we show that
there are frequent mechanical arbitrage opportunities associated
with this correlation breakdown, which are available to which-
ever trader acts fastest.

For each result we first present summary statistics and then
explore how the phenomenon has evolved over the time period
of our data, 2005–2011. The summary statistics give a sense of
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magnitudes for what we depicted anecdotally in Figure I. The
time-series evidence suggests that correlation breakdown and
mechanical arbitrage are intrinsic features of the continuous
limit order book market, rather than market failures that are
competed away over time.

Before proceeding, we emphasize that the finding that corre-
lations break down at high-enough frequency—which is an ex-
treme version of a phenomenon discovered by Epps (1979)11—is
obvious from introspection alone, at least ex post. There is noth-
ing in current market architecture—in which each financial in-
strument trades in continuous time on its own separate limit-
order book, rather than in a single combinatorial auction mar-
ket—that would allow different instruments’ prices to move at
exactly the same time.

V.A. Correlation Breakdown

1. Summary Statistics. Figure II displays the median, min,
and max daily return correlation between ES and SPY for time
intervals ranging from 1 millisecond to 60 seconds, for our 2011
data, under our main specification for computing correlation. In
this main specification, we compute the correlation of percentage
changes in the equal-weighted midpoint of the ES and SPY bid
and ask, and ignore speed-of-light issues. As can be seen from the
figure, the correlation between ES and SPY is nearly 1 at long-
enough intervals,12 but breaks down at high-frequency time in-
tervals. The 10 millisecond correlation is just 0.1016, and the 1
millisecond correlation is just 0.0080.

We consider several other specifications for computing the
ES-SPY correlation in Online Appendix A.1.1. We also examine
correlations for pairs of related equity securities in Online

11. Epps (1979) found that equity market correlations among stocks in the same
industry (e.g., Ford-GM) were much lower over short time intervals than over
longer time intervals; in that era, ‘‘very short’’ meant 10 minutes, and long meant
a few days.

12. It may seem surprising at first that the ES-SPY correlation does not ap-
proach 1 even faster. An important issue to keep in mind, however, is that ES and
SPY trade on discrete price grids with different tick sizes: ES tick sizes are 0.25
index points, whereas SPY tick sizes are 0.10 index points. As a result, small
changes in the fundamental value of the S&P 500 index manifest differently in
the two markets, due to what are essentially rounding issues. At long time horizons
these rounding issues are negligible relative to changes in fundamentals, but at
shorter frequencies these rounding issues are important, and keep correlations
away from 1.
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FIGURE II

ES and SPY Correlation by Return Interval: 2011

This figure depicts the correlation between the return of the E-mini S&P
500 future (ES) and the SPDR S&P 500 ETF (SPY) bid-ask midpoints as a
function of the return time interval in 2011. The solid line is the median cor-
relation over all trading days in 2011 for that particular return time interval.
The dotted lines represent the minimum and maximum correlations over all
trading days in 2011 for that particular return time interval. Panel A shows a
range of time intervals from 1 to 60,000 milliseconds (ms) or 60 seconds. Panel
B shows that same picture but zoomed in on the interval from 1 to 100 ms. For
more details on the data, refer to Section IV.
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Appendix A.1.2, for which speed-of-light issues do not arise since
they trade in the same physical location. In all cases, correlations
break down at high frequency.

2. Correlation Breakdown over Time. Figure III displays the
ES-SPY correlation versus time interval curve that we depicted
above as II, Panel b, but separately for each year in the time
period 2005–2011 that is covered in our data. As can be seen
in the figure, the market has gotten faster over time in the
sense that economically meaningful correlations emerge more
quickly in the later years of our data than in the earlier years.
For instance, in 2011 the ES-SPY correlation reaches 0.50 at a
142-millisecond interval, whereas in 2005 the ES-SPY correlation
only reaches 0.50 at a 2.6-second interval. However, in all years
correlations are essentially zero at high enough frequency.

FIGURE III

ES and SPY Correlation Breakdown over Time: 2005–2011

This figure depicts the correlation between the return of the E-mini S&P
500 future (ES) and the SPDR S&P 500 ETF (SPY) bid-ask midpoints as a
function of the return time interval for every year from 2005 to 2011. Each
line depicts the median correlation over all trading days in a particular year,
taken over each return time interval from 1 to 100 milliseconds. For 2005–2008
the CME data is only at 10 milliseconds resolution, so we compute the median
correlation for each multiple of 10 milliseconds and then fit a cubic spline. For
more details on the data, refer to Section IV.
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V.B. Mechanical Arbitrage

1. Computing the ES-SPY Arbitrage. Conceptually, our goal is
to identify all of the ES-SPY arbitrage opportunities in our data in
the spirit of the example shown in Figure I, Panel D—buy cheap
and sell expensive when one instrument has jumped and the
other has yet to react—and for each such opportunity measure
its profitability and duration. The full details of our method for
doing this are in Online Appendix A.2.1. Here, we mention the
most important points.

First, there is a difference in levels between the two instru-
ments, called the spread. The spread arises from three sources:
ES is larger than SPY by a term that represents the carrying cost
of the S&P 500 index until the ES contract’s expiration date; SPY
is larger than ES by a term that represents S&P 500 dividends,
which SPY holders receive and ES holders do not; and the basket
of stocks in the ETF typically differs slightly from the basket of
stocks in the S&P 500 index, called ETF tracking error. Our ar-
bitrage computation assumes that at high-frequency time hori-
zons, changes in the ES-SPY spread are mostly driven not by
changes in these persistent factors but instead by temporary
noise, that is, by correlation breakdown. We then assess the va-
lidity of this assumption empirically by classifying as ‘‘bad arbs’’
anything that looks like an arbitrage opportunity to our compu-
tational procedure but turns out to be a persistent change in the
level of the ES-SPY spread, for example, due to a change in short-
term interest rates.

Second, while Figure I depicts bid-ask midpoints, in comput-
ing the arbitrage opportunity we assume that the trader buys the
cheaper instrument at its ask while selling the more expensive
instrument at its bid (with cheap and expensive defined relative
to the difference in levels). That is, the trader pays bid-ask spread
costs in both markets.13 Our arbitrageur only initiates a trade
when the expected profit from doing so, accounting for bid-ask

13. This is a simple and transparent estimate of transactions costs. A richer
estimate would account for the fact that the trader might not need to pay half the
bid-ask spread in both ES and SPY, which would lower costs, and would account for
exchange fees and rebates, which on net would increase costs. As an example, a
high-frequency trader who detects a jump in the price of ES that makes the price of
SPY stale might trade instantaneously in SPY at the stale prices, paying half the
bid-ask spread plus an exchange fee, but might seek to trade in ES at its new price as
a liquidity provider, in which case he would earn rather than pay half the bid-ask
spread.
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spread costs, exceeds a modest profitability threshold of 0.05
index points (one-half of one penny in the market for SPY). If
the jump in ES or SPY is sufficiently large that the arbitrageur
can profitably trade through multiple levels of the book net of
costs and the threshold, then he does so.

Third, we only count arbitrage opportunities that last at least
4 milliseconds, the one-way speed-of-light travel time between
New York and Chicago. Arbitrage opportunities that last fewer
than 4 milliseconds are not exploitable under any possible tech-
nological advances in speed (other than by a god-like arbitrageur
who is not bound by special relativity). Therefore, such
opportunities should not be counted as part of the prize that
high-frequency trading firms are competing for, and we drop
them from the analysis.

2. Summary Statistics. Table I reports summary statistics on
the ES-SPY arbitrage opportunity over our full data set, 2005–
2011.

An average day in our data set has about 800 arbitrage op-
portunities, while an average arbitrage opportunity has quantity
of 14 ES lots (7,000 SPY shares) and profitability of 0.09 in index
points (per unit traded) and $98.02 in dollars. The 99th percentile
of arbitrage opportunities has a quantity of 145 ES lots (72,500
SPY shares) and profitability of 0.22 in index points and $927.07
in dollars.

Total daily profits in our data are on average $79,000 per day,
with profits on a 99th percentile day of $554,000. Since our SPY
data come from just one of the major equities exchanges, and
depth in the SPY book is the limiting factor in terms of quantity
traded for a given arbitrage in nearly all instances (typically the
depths differ by an order of magnitude), we also include an esti-
mate of what total ES-SPY profits would be if we had SPY data
from all exchanges and not just NYSE. We do this by multiplying
each day’s total profits based on our NYSE data by a factor of (1 /
NYSE’s market share in SPY), with daily market share data
sourced from Bloomberg.14 This yields average profits of
$306,000 a day, or roughly $75 million a year. We discuss the

14. NYSE’s daily market share in SPY has a mean of 25.9 percent over the time
period of our data, with mean daily market share highest in 2007 (33.0 percent) and
lowest in 2011 (20.4 percent). Most of the remainder of the volume is split between
the other three largest exchanges, NASDAQ, BATS, and DirectEdge.
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total size of the arbitrage opportunity in more detail below in
Section V.C.

The majority (88.56 percent) of the arbitrage opportunities in
our data set are initiated by a price change in ES, with the re-
maining 11.44 percent initiated by a price change in SPY. That
the large majority of arbitrage opportunities are initiated by ES is
consistent with the practitioner perception that the ES market is
the center for price discovery in the S&P 500 index, as well as
with our finding in Online Appendix Table A.1 that correlations
are higher when we treat the New York market as lagging
Chicago than when we treat the Chicago market as lagging
New York or treat the two markets equally.

Nearly all (99.99 percent) of the arbitrage opportunities we
identify are ‘‘good arbs,’’ meaning that deviations of the ES-SPY
spread from our estimate of fair value that are large enough to
trigger an arbitrage nearly always reverse within a modest
amount of time. This is one indication that our method of com-
puting the ES-SPY arbitrage opportunity is sensible.

3. Mechanical Arbitrage over Time: 2005–2011. In this subsec-
tion we explore how the ES-SPY arbitrage opportunity has
evolved over time.

TABLE I

ES-SPY ARBITRAGE SUMMARY STATISTICS, 2005–2011

Percentile

Mean 1 5 25 50 75 95 99

# of arbs/day 801 118 173 285 439 876 2498 5353
Per arb quantity (ES lots) 13.83 0.20 0.20 1.25 4.20 11.99 52.00 145.00
Per arb profits (index pts) 0.09 0.05 0.05 0.06 0.08 0.11 0.15 0.22
Per arb profits ($) 98.02 0.59 1.08 5.34 17.05 50.37 258.07 927.07
Total daily profits,

NYSE data ($)
79 k 5 k 9 k 18 k 33 k 57 k 204 k 554 k

Total daily profits,
all exchanges ($)

306 k 27 k 39 k 75 k 128 k 218 k 756 k 2,333 k

% ES initiated 88.56
% good arbs 99.99
% buy vs. sell 49.77

Notes. This table shows the mean and various percentiles of arbitrage variables from the mechanical
trading strategy between the E-mini S&P 500 future (ES) and the SPDR S&P 500 ETF (SPY) described in
Section V.B and Online Appendix A.2.1. The data, described in Section IV, cover January 2005 to
December 2011. Variables are described in the text of Section V.B.
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FIGURE IV

Duration of ES & SPY Arbitrage Opportunities over Time: 2005–2011

Panel A shows the median duration of ES-SPY arbitrage opportunities for
each day in our data. Panel B plots arbitrage duration against the proportion of
opportunities lasting at least that duration, for each year in our data. We drop
opportunities that last fewer than 4 milliseconds, the speed-of-light travel time
between New York and Chicago. Prior to November 24, 2008, we drop oppor-
tunities that last fewer than 9 milliseconds, the maximum combined effect of
the speed-of-light travel time and the rounding of CME data to centiseconds.
See Section V.B for details regarding the arbitrage. See Section IV for details
regarding the data.
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Figure IV explores the duration of ES-SPY arbitrage oppor-
tunities over the time of our data set, covering 2005–2011. As can
be seen in Panel A, the median duration of arbitrage opportuni-
ties has declined dramatically over this time period, from a
median of 97 milliseconds in 2005 to a median of 7 milliseconds
in 2011. Panel B plots the distribution of arbitrage durations over
time, asking what proportion of arbitrage opportunities last at
least a certain amount of time, for each year in our data. The
figure conveys how the speed race has steadily raised the bar
for how fast one must be to capture arbitrage opportunities. For
instance, in 2005 nearly all arbitrage opportunities lasted at least
10 milliseconds and most lasted at least 50 milliseconds, whereas
by 2011 essentially none lasted 50 milliseconds and very few
lasted even 10 milliseconds.

Figure V explores the per arbitrage profitability of ES-SPY
arbitrage opportunities over the time of our data set. In contrast
to arbitrage durations, arbitrage profits have remained remark-
ably constant over time. Panel A shows that the median profits
per contract traded have remained steady at around 0.08 index
points, with the exception of the 2008 financial crisis when they
were a bit larger. Panel B shows that the distribution of profits
has also remained relatively stable over time, again with the ex-
ception of the 2008 financial crisis where the right tail of profit
opportunities is noticeably larger.

Figure VI explores the frequency of ES-SPY arbitrage oppor-
tunities over the time of our data set. Unlike per arb profitability,
the frequency of arbitrage opportunities varies considerably over
time. Figure VI, Panel A shows that the median arbitrage fre-
quency seems to track the overall volatility of the market, with
frequency especially high during the financial crisis in 2008, the
Flash Crash on May 6, 2010, and the European crisis in summer
2011. This makes intuitive sense: when the market is more vola-
tile, there are more arbitrage opportunities because there are
more jumps in one market that leave prices temporarily stale in
the other market. Panel B confirms this intuition formally. The
figure plots the number of arbitrage opportunities on a given
trading day against a simple proxy of that day’s volatility we
call distance traveled, defined as the sum of the absolute-value
of changes in the ES midpoint price over the course of the trading
day. This one simple variable explains nearly all of the variation
in the number of arbitrage opportunities per day: the R2 of the
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FIGURE V

Profitability of ES & SPY Arbitrage Opportunities over Time: 2005–2011

Panel A shows the median profitability of ES-SPY arbitrage opportunities,
per unit traded, for each day in our data. Panel B plots the kernel density of the
profitability of arbitrage opportunities, per unit traded, for each year in our data.
See Section V.B for details regarding the ES-SPY arbitrage. See Section IV for
details regarding the data.
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FIGURE VI

Frequency of ES & SPY Arbitrage Opportunities over Time: 2005–2011

Panel A shows the time series of the total number of ES-SPY arbitrage
opportunities in each day in our data. Panel B depicts a scatter plot of the
total number of arbitrage opportunities in a trading day against ES distance
traveled, defined as the sum of the absolute value of changes in the ES mid-
point price over the course of the trading day. The solid line represents the
fitted values from a linear regression of arbitrage frequency on distance tra-
veled. See Section V.B for details regarding the arbitrage. See Section IV for
details regarding the data.
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regression of daily arbitrage frequency on daily distance traveled
is 0.87.

Together, the results depicted in Figures IV, V, and VI sug-
gest that the ES-SPY arbitrage opportunity should be thought of
more as a mechanical ‘‘constant’’ of the continuous limit order
book market than as a profit opportunity that is competed away
over time. Competition has clearly reduced the amount of
time that arbitrage opportunities last (Figure IV), but the size
of arbitrage opportunities has remained remarkably constant
(Figure V), and the frequency of arbitrage opportunities seems
to be driven mostly by market volatility (Figure VI). Figure III, on
the time series of correlation breakdown, reinforces this story:
competition has increased the speed with which information
from Chicago prices is incorporated into New York prices and
vice versa (the analogue of Figure IV), but competition has not
fixed the root issue that correlations break down at high enough
frequency (the analogue of Figure V).

These facts both inform and are explained by our model in
Section VI.

V.C. Discussion

In this section, we make two remarks about the size of the
prize in the speed race.

First, we suspect that our estimate of the annual value of the
ES-SPY arbitrage opportunity—an average of around $75 million
per year, fluctuating as high as $151 million in 2008 (the highest
volatility year in our data) and as low as $35 million in 2005 (the
lowest volatility year in our data)—is an underestimate for at
least three reasons. (i) Our trading strategy is extremely simplis-
tic. This simplicity is useful for transparency of the exercise and
for consistency when we examine how the arbitrage opportunity
has evolved over time, but it is likely that there are more sophis-
ticated trading strategies that produce higher profits. (ii) Our
trading strategy involves transacting at market in both ES and
SPY, which means paying half the bid-ask spread in both mar-
kets. An alternative approach that economizes on transactions
costs is to transact at market only in the instrument that lags—
for example, if ES jumps, transact at market in SPY but not in ES.
Since 89 percent of our arbitrage opportunities are initiated by a
jump in ES, and the minimum ES bid-ask spread is substantially
larger than the minimum SPY bid-ask spread (0.25 index points
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versus 0.10 index points), the transactions cost savings from this
approach can be meaningful. (iii) Our CME data consist of all of
the messages that are transmitted publicly to CME data feed
subscribers, but we do not have access to the trade notifications
that are transmitted privately to the parties involved in a partic-
ular trade. It has recently been reported (Patterson, Strasburg,
and Pleven 2013) that the public message feed lags private trade
notifications by an average of several milliseconds, because of the
way the CME processes message notifications. This lag could
cause us to miss profitable trading opportunities; in particular,
we worry that we are especially likely to miss some of the largest
trading opportunities, since large jumps in ES triggered by large
orders in ES also will trigger the most trade notifications, and
hence the most lag.

Second, and more important, ES-SPY is just the tip of the ice-
berg in the race for speed. We are aware of at least five categories of
speed races analogous to ES-SPY. (i) There are hundreds of trades
substantially similar to ES-SPY, consisting of exchange-traded in-
struments that are highly correlated and with sufficient liquidity to
yield meaningful profits from simple mechanical arbitrage strate-
gies. Figure A.2 in the Online Appendix provides an illustrative
partial list.15 (ii) Because equity markets are fragmented (the
same security trades on multiple exchanges) there are trades
even simpler than ES-SPY. For instance, one can arbitrage SPY
on NYSE against SPY on NASDAQ (or BATS, dark pools, etc.). We
are unable to detect such trades because the latency between equi-
ties exchanges—all of whose servers are located in data centers in
New Jersey—is measured in microseconds, which is finer than the
current resolution of researcher-available exchange data. (iii)
Instruments that are meaningfully correlated, but with correlation
far from 1, can also be traded in a manner analogous to ES-SPY.
For instance, even though the Goldman Sachs–Morgan Stanley
correlation is far from 1, a large jump in GS may be sufficiently
informative about the price of MS that it induces a race to react in
the market for MS. As we show in Online Appendix A.1.2, the

15. In equities data downloaded from Yahoo! Finance, we found 391 pairs of
equity securities with daily returns correlation of at least 0.90 and average daily
trading volume of at least $100 million per security (calendar year 2011). It has not
yet been possible to perform a similar screen on the universe of all exchange-traded
financial instruments, including, for example, index futures, commodities, bonds,
currencies, etc., due to data limitations. Instead, we include illustrative examples
across all instrument types in Online Appendix Figure A.2.
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equities market correlation matrix breaks down at high frequency,
suggesting that such trading opportunities—whether they involve
pairs of stocks or simple statistical relationships among sets of
stocks—may be important. (iv) There is a race to respond to
public news events such as Fed announcements, the release of im-
portant government statistics, the posting of corporate SEC filings,
and so on. In this race, the precise effect of the public news on asset
prices is often hard to determine at high frequency, but the sign and
rough magnitude of the news can be determined quickly (Rogers,
Skinner, and Zechman 2014). (v) In addition to the race to snipe
stale quotes, there is also a race among liquidity providers to the top
of the book (see Moallemi 2014; Yao and Ye 2014). This last race is
an artifact of the minimum tick increment imposed by regulators
and/or exchanges.

While we hesitate, in the context of the present article, to put
a precise estimate on the total prize at stake in the arms race,
back-of-the-envelope extrapolation from our ES-SPY estimates
suggests that the annual sums are substantial.

VI. Model: Critique of the Continuous Limit Order Book

We have established three empirical facts about continuous
limit order book markets. First, correlations completely break
down at high-enough frequency, even for financial instruments
that are nearly perfectly correlated at longer frequencies. Second,
this correlation breakdown is associated with frequent mechani-
cal arbitrage opportunities, available to whoever wins the race to
exploit them. Third, the prize in the arms race seems to be more
like a constant than something that is competed away over time.

We now develop a purposefully simple model that is informed
by and helps make sense of these empirical facts. The model ul-
timately serves two related purposes: it is a critique of the con-
tinuous limit order book market design, and it articulates the
economics of the HFT arms race.

VI.A. Preliminaries

Security x with Perfect Public Signal y. There is a security x
that trades on a continuous limit order book, the rules of which
are described in Section III. There is a publicly observable signal
y of the value of security x. We make the following purposefully
strong assumption: the fundamental value of x is perfectly
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correlated to the public signal y, and, moreover, x can always be
costlessly liquidated at this fundamental value. This is a best-
case scenario for price discovery and liquidity provision in a con-
tinuous limit order book, abstracting from both asymmetric infor-
mation and inventory costs.

We think of x and y as a metaphor for pairs or sets of ex-
change-traded financial instruments that are highly correlated.
For instance, x is SPY and y is ES. Alternatively, y can be inter-
preted more abstractly as a publicly observable perfect signal
about the value of security x.

The signal y, and hence the fundamental value of security x,
evolves as a compound Poisson jump process with arrival rate
ljump and jump distribution Fjump. The jump distribution has
finite bounded support and is symmetric with mean zero. Let J
denote the random variable formed by drawing randomly accord-
ing to Fjump, and then taking the absolute value; we refer to J as
the jump size distribution.

Investors and Trading Firms. There are two types of players,
investors and trading firms. Both types of players are risk-neu-
tral and there is no discounting.

The players we call investors we think of as the end users of
financial markets: mutual funds, pension funds, hedge funds, in-
dividuals, etc. Since there is no asymmetric information about
fundamentals in our model, our investors could equivalently be
called ‘‘liquidity traders’’ as in Glosten and Milgrom (1985) or
‘‘noise traders’’ as in Kyle (1985). Investors arrive stochastically
to the market with an inelastic need to either buy or sell a unit of x
(we generalize to multiple units in Section VI.B). The arrival pro-
cess is Poisson with rate linvest, and, conditional on arrival, it is
equally likely that the investor needs to buy versus sell. We
assume that all else equal, investors prefer to transact sooner
rather than later. Formally, if an investor arrives to market at
time t needing to buy one unit, and then buys a unit at time t0 � t
for price p, her payoff is vþ ðyt0 � pÞ � fdelaycostðt

0 � tÞ, where v is a
large positive constant that represents her inelastic need to com-
plete the trade, yt0 is the fundamental value of x at the time she
trades, and the function fdelaycostð�Þ, which is strictly increasing and
continuous with fdelaycostð0Þ ¼ 0, represents her preference to
transact sooner rather than later. If the investor arrives needing
to sell, and sells a unit at price p at time t0, her payoff is
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vþ ðp� yt0 Þ � fdelaycostðt
0 � tÞ. In the equilibrium of the continuous

limit order book we derive in Section VI.B, investors choose to
transact immediately. In the equilibria of frequent batch auctions,
studied in Section VII, investors will choose to transact in the
discrete-time analogue of immediately, namely, at the next avail-
able batch auction. Once investors transact, they exit the game.

Trading firms (equivalently HFTs, market makers, algorith-
mic traders) have no intrinsic demand to buy or sell x. Their goal
in trading is simply to buy x at prices lower than y, and to sell x at
prices higher than y. If a trading firm buys a share of x at price p at
time t, they earn profits from that trade of yt � p; similarly, if they
sell a share of x at price p at time t they earn profits from that
trade of p� yt. Trading firms’ objective is to maximize profits per
unit time. We initially assume that the number of trading firms N
is exogenous, and assume that N � 2. Later, we endogenize entry.

We assume that investors act only as ‘‘takers’’ of liquidity,
whereas trading firms act as both ‘‘makers’’ and ‘‘takers’’ of liquid-
ity. More concretely, we assume that investors only use marketable
limit orders, which are limit orders with a bid price weakly greater
than the best outstanding ask (if buying) or an ask price weakly
lower than the best outstanding bid (if selling), whereas trading
firms may use both marketable and nonmarketable limit orders.16

Latency. Initially, we assume away all latency for trading
firms; again, our goal is to create a best-case environment for
price discovery and liquidity provision in a continuous limit
order book market. Trading firms observe innovations in the
signal y with zero time delay, and there is zero latency in sending
orders to the exchange and receiving updates from the exchange.
If multiple messages reach the market at the same time, they are
processed in serial in a random order. This random tie-breaking
can be interpreted as messages being transmitted with small

16. The assumption that investors (equivalently, liquidity traders or noise tra-
ders) are liquidity takers is standard in the market microstructure literature. Our
treatment of trading firms as both makers and takers of liquidity is slightly
nonstandard. This is because our trading firms will play a role that combines as-
pects of what the traditional market microstructure literature calls a market maker
(who provides liquidity) and what the traditional literature calls an informedtrader
(who takes liquidity). This will become clearer when we describe the role trading
firms play in equilibrium in Section VI.B.
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random latency, and then processed serially in the order
received.17

When we endogenize entry by trading firms, we add latency
to the observation of innovations in y and the ability to invest
resources to reduce this latency.

We assume that investors observe y with latency strictly
greater than trading firms; it is unimportant by how much.

VI.B. Equilibrium, Exogenous Entry

In this section we describe the equilibrium of our model with
exogenous entry by trading firms. The structure of this equilib-
rium is unique (as made precise below), but the assignment of
trading firms to roles within this structure is not unique. Our
solution concept is pure-strategy static Nash equilibrium.18

1. Investors. Investors trade immediately when their demand
arises, buying or selling at the best available ask or bid, respec-
tively. As we will see, the bid-ask spread is constant in equilib-
rium, so investors have no incentive to delay trade.

2. Behavior of Trading Firms. The N trading firms endoge-
nously sort themselves into two roles: 1 plays a role we call ‘‘li-
quidity provider’’ and N – 1 play a role we call ‘‘stale-quote
sniper.’’ Trading firms will be indifferent between these two
roles in equilibrium, and our equilibrium uniqueness claim does
not specify the precise sorting of trading firms into roles. For
simplicity, we assume that they sort themselves into the two
roles in a coordinated manner, specifically, player 1 always
plays the role of liquidity provider. However, there are economi-
cally equivalent equilibria in which who plays the role of liquidity

17. Exchanges offer a service called colocation to HFT firms, whereby HFTs pay
for the right to place their computers in the same location as the exchange’s com-
puters. The exchanges are careful to ensure that each colocated computer is the
same physical distance, measured by cord length, from the exchange computers.
Hence, if multiple HFTs send orders to the exchange at the same time, it really is
random which will be processed first. See Rogow (2012) for more details on
colocation.

18. Static Nash equilibrium means that investors’ and trading firms’ play con-
stitutes a standard Nash equilibrium in each instant of the trading day. This rules
out, for instance, the possibility of equilibria in which trading firms collude.
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provider is stochastic, or rotates, etc.19 In practice, some HFT
firms primarily play the role of liquidity provider, some primarily
play the role of sniper, and some perform both roles.

Liquidity Provider: The liquidity provider behaves as follows.
At the start of trading, which we denote by time 0, the liquidity
provider submits two limit orders, the first to buy 1 unit of x at
price y0 �

s
2, the other to sell 1 unit of x at price y0 þ

s
2. These

quotes constitute the opening bid and ask, respectively, and
s � 0 is the bid-ask spread.20 We derive the equilibrium value of
s below. The bid-ask spread will be constant throughout the trad-
ing day.

If the signal y jumps at time t, from yt� to yt (we use the
notation yt� ¼ lim t0!t� yt0 ), per the Poisson arrival process de-
scribed above, the liquidity provider immediately adjusts her
quotes. Specifically, at time t she sends a message to the exchange
to cancel her previous quotes, of yt� �

s
2 and yt� þ

s
2, and also sends

a message with a new bid and ask of yt �
s
2 and yt þ

s
2.

If an investor arrives to the market at time t, per the Poisson
arrival process described above, and buys at the current ask of
yt þ

s
2, the liquidity provider immediately replaces the accepted

ask with a new ask at this same value of yt þ
s
2. Similarly, if an

investor arrives at time t and sells at the current bid of yt �
s
2, the

liquidity provider immediately replaces the accepted bid with a
new bid at this same value of yt �

s
2. In either case, the liquidity

provider books profits of s
2. Note that the liquidity provider does

not directly observe that her trading partner is an investor as
opposed to another trading firm, though she can infer this in
equilibrium from the fact that trade has occurred at a time t
when there is not a jump in the signal y.

If in some time interval there is neither a jump in the signal
y, nor the arrival of a new investor, the liquidity provider does not
take any action.

19. In practice tick sizes are discrete (penny increments), whereas we allow for
bids and asks to be any real value. If we used a discrete price grid, then the role of
liquidity provider would generically be strictly preferred to the role of stale-quote
sniper at the equilibrium bid-ask spread. In this case, the N trading firms would
race to play the role of liquidity provider, and then the N – 1 losers of the race would
play the role of stale-quote sniper. For a large enough tick size there would also be
greater than unit depth in the book.

20. We adopt the convention that it is possible for a liquidity provider to quote a
zero bid-ask spread. Formally, this can be interpreted as the limit as e!0þ of a bid-
ask spread of s ¼ e.
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Stale-Quote Snipers: Suppose that at time t the signal y
jumps from yt� to yt, and the jump size jyt � yt� j exceeds s

2. As
described above, the liquidity provider will send a message at
time t to cancel her old quotes at yt� �

s
2 and yt� þ

s
2 and replace

them with new quotes based on the new value of y. At the exact
same time, the N – 1 other trading firms respond to the change in
y by sending a message attempting to ‘‘snipe’’ the stale quotes.
That is, they attempt to trade at the old quotes based on yt� before
those quotes are canceled. Since the continuous limit order book
processes messages in serial, it is possible that a message to snipe
a stale quote will get processed before the liquidity provider’s
message to cancel the stale quote, creating a rent for the sniper
and a cost for the liquidity provider. In fact it is not only possible
but probable, because there are N – 1 snipers against 1 liquidity
provider, and it is random whose message is processed first.21

Formally, if yt > yt� þ
s
2, each stale-quote sniper submits a

limit order at t to buy a single unit at price yt� þ
s
2; symmetrically,

if yt < yt� �
s
2, each stale-quote sniper submits a limit order at t to

sell a single unit at price yt� �
s
2. If the sniper’s order executes

against the stale quote she books profits of jyt � yt�j �
s
2. If the

sniper’s order does not execute against the stale quote, that is,
if her order is not the first of the N to be processed, she immedi-
ately withdraws her order.22

If the jump at t is small, specifically, if yt� �
s
2 < yt < yt� þ

s
2,

then the sniper takes no action. Similarly, if in some time interval
there is no jump in the signal y, the sniper takes no action.

21. In our model, all trading firms are equally fast, so their messages reach the
exchange at the exact same time, and then the exchange breaks the tie randomly. A
more realistic model would add a small random latency to each trading firm’s mes-
sage transmission—for example, a uniform-random draw from ½0; e�—and then
whichever trading firm had the smallest draw from ½0; e� would win the race (see
also note 17). This would yield exactly the same probability of winning the race of 1

N.
Note too that in a richer model with multiple liquidity providers this basic 1

N logic
still obtains: for every one liquidity provider trying to cancel, all other trading
firms—including firms that are also providing their own liquidity—attempt to
snipe.

22. By ‘‘immediately withdraws her order’’ we mean the following. As soon as
the sniper receives confirmation from the exchange that her order was not exe-
cuted, she sends a message to the exchange to remove the order. In our model,
both the confirmation that the initial order was not executed and the message to
remove the order occur instantaneously. Thus, for any time t0 > t, the unsuccessful
sniper’s order is removed by the market by t0. In practice, exchanges automate this
type of behavior with an order type called ‘‘immediate or cancel.’’
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Equilibrium Bid-Ask Spread. In equilibrium, the bid-ask
spread s leaves trading firms indifferent between liquidity provi-
sion and stale-quote sniping.

The liquidity provider earns profits of s
2 when investors arrive

to market, which occurs at arrival rate linvest, and incurs losses
whenever stale quotes are sniped. The losses from sniping arise if
there is a jump, which occurs at rate ljump; the jump is larger than
s
2; and the liquidity provider does not win the race to react (i.e., is
not processed first), which occurs with probability N�1

N . In the
event she loses the race, her expected loss is EðJ � s

2 jJ >
s
2Þ, that

is, the conditional expectation of the jump size less half the bid-
ask spread. Thus, the benefits less costs of providing liquidity, per
unit time, are

linvest �
s

2
� ljump � Pr J >

s

2

� �
� E J �

s

2
jJ >

s

2

� �
�
N � 1

N
:ð1Þ

Stale-quote snipers earn profits when they successfully ex-
ploit a stale quote after a jump larger in size than half the bid-ask
spread. When such a jump occurs, each sniper wins the race to
exploit with probability 1

N. Hence each sniper’s expected profits,
per unit time, are

ljump � Pr J >
s

2

� �
� E J �

s

2
jJ >

s

2

� �
�

1

N
:ð2Þ

Notice that, summed over all N – 1 snipers, this equals the
liquidity provider’s cost of providing liquidity; this captures that
trade among trading firms is zero sum.

Equating (1) and (2) yields the equilibrium indifference
condition:

linvest �
s

2
¼ ljump � Pr J >

s

2

� �
� E J �

s

2
jJ >

s

2

� �
:ð3Þ

Equation (3) uniquely pins down the equilibrium bid-ask
spread s�, because the left-hand side is strictly increasing in s
and has value 0 at s = 0, whereas the right-hand side is strictly
decreasing in s and is positive for s = 0. The equation also has a
natural economic interpretation. The left-hand side is the total
revenue earned by trading firms from investors from the positive
bid-ask spread. The right-hand side is the total rents to trading
firms from sniping stale quotes. Notice that N�1

N of these rents go
to stale-quote snipers and the remaining 1

N of these rents goes to
the liquidity provider, who is compensated for her opportunity
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cost of not being a sniper. Notice, too, that equation (3) does not
depend on N; this foreshadows that endogenizing entry will have
no effect on the bid-ask spread or arms-race prize.

We summarize the equilibrium with the following
proposition.

PROPOSITION 1 (Equilibrium with Exogenous Entry). There is an
equilibrium of the continuous limit order book market design
with play as described above. The structure of this equilib-
rium is unique in the following sense. In any equilibrium:

(i) At almost all times t, there is exactly one unit offered in
the limit order book at bid yt �

s�

2 and exactly one unit
offered at ask yt þ

s�

2 , with the bid-ask spread s� uniquely
characterized by the solution to equation (3). These two
quotes may belong to one trading firm or to two distinct
trading firms. There are no other orders in the book,
except possibly for orders that trade with probability zero.

(ii) Investors trade immediately when their demand arises.
(iii) If there is a jump in yt that is strictly larger than s�

2 , the 1
trading firm with a snipe-able stale quote (i.e., the ask if
the jump is positive, the bid if the jump is negative) im-
mediately sends a message to cancel her stale quote, and
the other N – 1 trading firms immediately send a message
to snipe the stale quote. The liquidity provider is sniped
with probability N�1

N .
(iv) Trading firms are indifferent between liquidity provision

and stale-quote sniping, for both the bid and the ask.
(v) As per equation (3), the following two quantities are equiv-

alent in any equilibrium and do not depend on N:
. The total rents to trading firms, ljump � PrðJ > s�

2 Þ�

EðJ � s�

2 jJ >
s�

2 Þ. That is, the sum of the value of all
arbitrage opportunities that the snipers are racing to
capture.

. The total revenue liquidity providers earn from inves-
tors via the positive bid-ask spread, linvest �

s�

2 .

See Online Appendix B for further details about this equilib-
rium, such as behavior off the equilibrium path, which complete
the proof of Proposition 1.

4. Market Depth. Consider the model of Section VI.A but mod-
ified so that investors sometimes need to buy or sell multiple
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units. Specifically, investors arrive to market at rate linvest and
are equally likely to need to buy or sell, as before, but now they
need to transact a quantity q 2 f1; . . .; qg, with pk> 0 the proba-
bility that they need to transact k units, for k ¼ 1; . . .; q. Before,
we assumed that investors trade a single unit immediately at
market. Here, we make a stronger assumption which is that in-
vestors transact their full quantity desired immediately at
market. We emphasize that such behavior is not optimal: an in-
vestor with multi-unit demand will prefer to split his order into
several smaller orders (analogously to Kyle (1985); Vayanos
(1999); Sannikov and Skrzypacz (2014)). Instead, we view this
assumption as allowing us to illustrate a mechanical point
about continuous limit order book markets, which is that sniping
makes it especially costly to provide a deep book.

There is an equilibrium of this model analogous to that in
Section VI.B, in which the N trading firms serve both as liquidity
providers and stale-quote snipers, and are indifferent between
these two roles quote by quote. In equilibrium, the bid-ask
spread for the kth unit of liquidity, sk, is governed by indifference
between liquidity provision (LHS) and stale-quote sniping (RHS)
at the kth level of the book:

linvest �
Xq

i¼k

pi �
sk

2
�ljump �Pr J>

sk

2

� �
�E J�

sk

2
jJ>

sk

2

� �
�
N�1

N

¼ ljump �Pr J>
sk

2

� �
�E J�

sk

2
jJ>

sk

2

� �
�

1

N
:ð4Þ

The LHS of equation (4) represents the benefits less costs of
liquidity provision in the kth level of the book. Notice that the
second term on the LHS of equation (4), which describes the costs
of getting sniped, is the same as the second term of equation (1).
This is because if a quote becomes stale, stale-quote snipers will
attempt to pick off as much quantity as is available at an advan-
tageous price. Similarly, the RHS of equation (4), which repre-
sents the benefits of sniping the kth level of the book, is the same
as equation (2).

By contrast, except for the case of k = 1, the first term on the
LHS of equation (4), which describes the benefits of providing
liquidity, is strictly smaller than the first term of equation (1).
This is because only proportion

Pq
i¼k pi of investors trade the kth

level of the order book.
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Intuitively, the benefits of providing liquidity scale subline-
arly with the quantity offered, because only some investors re-
quire a large quantity; whereas the costs of providing liquidity
scale linearly with the quantity offered, because snipers will ex-
ploit stale quotes in the full quantity offered.23 The result is that
the equilibrium bid-ask spread is wider for the second unit than
for the first unit, wider for the third unit than the second unit, etc.
That is, the market is ‘‘thin’’ for large-quantity trades.

PROPOSITION 2 (Market Thinness). There exists an equilibrium of
the multi-unit demand model with play as described above.
The structure of this equilibrium is unique in the following
sense. In any equilibrium:

(i) At almost all times t there is exactly one unit offered in
the limit order book at bid yt �

s�
k

2 and one unit offered at
ask yt þ

s�
k

2 , for each k ¼ 1; . . .; q. The bid-ask spread s�k for
the kth unit of liquidity is uniquely characterized by equa-
tion (4). These 2q quotes may belong to one trading firm or
to multiple distinct trading firms. There are no other
orders in the book, except possibly for orders that trade
with probability zero.

(ii) Spreads are strictly increasing,

s�1 < s�2 < . . . < s�q :

Hence, investors’ per-unit cost of trading is strictly in-
creasing in order size.

(iii) If there is a jump in yt that is strictly larger than
s�

k

2 and
weakly less than

s�
kþ1

2 , then there are k snipe-able stale
quotes. For each of the k stale quotes, the trading firm
with the stale quote immediately sends a message to
cancel, and the N – 1 other trading firms immediately
send a message to snipe. Each stale quote is sniped with
probability N�1

N .
(iv) The N trading firms are indifferent between liquidity pro-

vision and stale-quote sniping at all levels of the order
book.

23. A similar intuition is present in Glosten (1994), which derives bid-ask
spreads that increase with quantity in a model with asymmetric information.
Our market thinness result is to Glosten (1994) as our bid-ask spread result is to
Glosten and Milgrom (1985).
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(v) As per equation (4), the following two quantities are equiv-
alent in any equilibrium and do not depend on N:

. The total rents to trading firms:
Pq

k¼1 ljump � PrðJ >
s�

k

2 Þ�

EðJ �
s�

k

2 jJ >
s�

k

2 Þ. That is, the sum of the value of all
sniping opportunities, across all levels of the book.

. The total revenue liquidity providers earn from inves-
tors via the positive bid-ask spreads, linvest

Pq
k¼1 �Pq

i¼k pi �
s�

k

2 .

VI.C. Discussion: Sniping Is ‘‘Built In’’ to the Market Design

Given the model setup, one might have conjectured that
Bertrand competition among the N trading firms leads to infinite
costless liquidity for investors and zero rents for trading firms. All
of the usual channels of costly liquidity provision are turned off.
There is no asymmetric information as in the models of Copeland
and Galai (1983), Glosten and Milgrom (1985), or Kyle (1985);
instead, all trading firms observe innovations in the signal y at
exactly the same time, and this signal y is perfectly informative
about the fundamental value of x. There are no inventory costs as
in Stoll (1978) or search costs as in Duffie, Garleanu, and
Pedersen (2005); instead, the security x can at all times be cost-
lessly liquidated at its fundamental value y. So one should expect
that competitive forces would drive the price for liquidity to zero.

Our analysis shows, however, that the continuous limit order
book market design itself is a source of costly liquidity provision.
The core issue is that even symmetrically observed public infor-
mation creates arbitrage opportunities for trading firms, because
trade requests are processed serially. As suggested by the em-
pirics, obvious mechanical arbitrage opportunities are ‘‘built in’’
to the market design. Moreover, serial processing stacks the deck
against liquidity providers in the race to respond to new public
information. To avoid being sniped, the liquidity provider’s re-
quest to cancel her stale quote must be processed before all of
the other trading firms’ requests to exploit her stale quote.
Hence, liquidity providers get sniped with probability N�1

N even
though they learn their quotes are stale at exactly the same time
as the other trading firms. In a competitive market, liquidity pro-
viders recover the expense of being sniped by charging more for
liquidity, that is, sniping costs lead to wider bid-ask spreads and
thinner markets.
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REMARK 1 (Sniping Harms Liquidity). In our model there are no
inventory costs, search costs, or information asymmetries.
Nevertheless, in any equilibrium, the bid-ask spread s� is
strictly positive and investors’ per-unit cost of trading is
strictly increasing in order size.

Our source of costly liquidity provision is most similar to that
in Copeland and Galai (1983) and Glosten and Milgrom (1985),
namely, a liquidity provider sometimes gets exploited by another
player who knows that the liquidity provider’s quote is mispriced.
The conceptual difference is that in Copeland and Galai (1983)
and Glosten and Milgrom (1985) there is asymmetric information
between the liquidity provider and this other player (the ‘‘in-
formed trader’’), whereas in our model the liquidity providers
and these other players (stale-quote snipers) are symmetrically
informed.24 The mechanical reason that our source of costly li-
quidity provision does not arise in these prior works is a subtle
difference in how the continuous limit order book is modeled. Our
model uses the actual rules of the continuous limit order book (see
Section III) in which the market runs in continuous time and
players can submit orders whenever they like. Copeland and
Galai (1983) and Glosten and Milgrom (1985), as well as other
subsequent market microstructure analyses of limit order books
such as Foucault (1999) and Goettler, Parlour, and Rajan (2005),
use abstractions of the continuous limit order book in which play
occurs in discrete time and players can only act when it is their
exogenously specified turn to do so. This abstraction is innocuous
in the context of their analyses, but it precludes the possibility of
a race to respond to symmetrically observed public information as
in our analysis.

A potentially useful way to summarize the relationship is
that our model shows that the continuous limit order book

24. One could argue that, in reality, information among HFT firms is always at
least slightly asymmetric. Some firm detects the change in the signal y a tiny bit
earlier than other firms, and during the interval is asymmetrically informed. Thus,
one might argue, sniping is no different from traditional adverse selection due to
asymmetric information. However, this argument implicitly assumes that there is
no such thing as symmetrically observed information in financial markets (other
than perhaps when the market is closed), whereas it is clearly implicit in financial
market regulation that certain kinds of information—company news releases, gov-
ernment data announcements, order book activity—should be disseminated sym-
metrically. Frequent batch auctions restore the possibility of meaningfully
symmetric information.
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market design causes symmetrically observed public information
to be processed by the market as if it were asymmetrically ob-
served private information. As we will see, discrete-time batching
eliminates this built-in adverse selection and restores the possi-
bility of meaningfully symmetric information.

VI.D. Equilibrium with Endogenous Entry: The HFT Arms Race

The equilibrium analysis in Section VI.B shows that the con-
tinuous limit order book creates rents for trading firms, and that
the sniping associated with these rents harms liquidity provision.
In this section we incorporate latency into the model and endo-
genize entry by allowing trading firms to invest in a costly speed
technology. This modification induces an arms race for speed. The
arms race dissipates the rents created by the continuous market
while doing nothing to fix the underlying liquidity problem asso-
ciated with sniping.

1. Speed Technology. We model investment in speed in a
simple way. Trading firms can costlessly observe the signal y
with latency �slow > 0, meaning that the value of signal y at
time t is observed at time tþ �slow. In addition, trading firms
can choose to invest in a speed technology, at a rental cost of
cspeed per unit time, which reduces their latency to �fast < �slow.
The cost cspeed is a metaphor for the cost of access to high-speed
data connections (such as the Spread Networks cable, or the mi-
crowaves that replaced it), the cost of cutting-edge hardware, the
cost of colocation facilities, the cost of the relevant human capital,
and so on. We assume that the decision of whether to pay this
speed cost is taken at the start of the game and is observable and
irreversible.25 Define � ¼ �slow � �fast, the speed difference be-
tween fast and slow trading firms.

Before, the number of trading firms N was exogenously spe-
cified. Here, we assume that there is a large fringe of slow trading
firms, of whom N endogenously decide to invest in speed. There
will be no role for slow trading firms in equilibrium. We assume
that the cost of speed satisfies a mild condition, described below
after equation (7) in note 26, which ensures that in equilibrium

25. Given the speed investment stage, our equilibrium concept becomes pure-
strategy subgame perfect Nash equilibrium for the investment stage, and pure-
strategy static Nash equilibrium throughout the trading day.
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there are at least two fast trading firms. For simplicity we then
allow N to take on any real value greater than or equal to 2,
rather than requiring N to be an integer. This allows us to char-
acterize the equilibrium level of N using a zero-profit condition.
Alternatively we could require that N is an integer, in which case
equilibrium N is characterized by weakly positive profits for trad-
ing firms with N entrants and strictly negative with N + 1.

2. Equilibrium. For expositional simplicity we focus on the
case where investors need to buy or sell a single unit; the gener-
alization to multi-unit trading akin to Section VI.B follows
naturally.

Equilibrium has a very similar structure to above. The N fast
trading firms who endogenously enter then sort themselves into 1
liquidity provider and N – 1 stale-quote snipers. Both the liquid-
ity provider and the stale-quote snipers behave exactly as de-
scribed above in Section VI.B, with the one modification that
they now each react to jumps in y with latency �fast. Investors
behave exactly as before, buying or selling immediately on
arrival.

Notice that while a fast liquidity provider successfully avoids
getting sniped 1

N of the time, a slow liquidity provider would
always be sniped. Similarly, a fast stale-quote sniper is successful
1
N of the time, whereas a slow stale-quote sniper would never be
successful. This is the intuition for why there is no role for slow-
trading firms in equilibrium.

Equilibrium is characterized by two zero-profit conditions.
First, we have the zero-profit condition for the liquidity provider,
which says that revenues minus costs as written in equation (1)
equal the costs of speed:

linvest �
s

2
� ljump � Pr J >

s

2

� �
� E J �

s

2
jJ >

s

2

� �
�
N � 1

N
¼ cspeed:

ð5Þ

Second is the zero-profit condition for stale-quote snipers,
which says that the rents from sniping as written in equation
(2) equal the costs of speed:

ljump � Pr J >
s

2

� �
� E J �

s

2
jJ >

s

2

� �
�

1

N
¼ cspeed:ð6Þ
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Together, equations (5) and (6) characterize the equilibrium
bid-ask spread s� and the equilibrium quantity of entry N�.
Notice that subtracting equation (6) from equation (5) yields ex-
actly equation (3); hence, the equilibrium bid-ask spread is the
same as in the exogenous entry case. We can then solve for the
equilibrium entry quantity by adding equation (5) and N – 1 times
equation (6) to obtain

linvest �
s�

2
¼ N� � cspeed:ð7Þ

The economic interpretation of equation (7) is that all of the
expenditure by trading firms on speed technology (RHS) is ulti-
mately borne by investors via the cost of liquidity (LHS).
Examining equation (3) as well, we have an equivalence between
the total prize in the arms race, the total expenditures on speed in
the arms race, and the cost to investors.26 Hence, the rents cre-
ated by the continuous limit order book are dissipated by the
speed race.27

PROPOSITION 3. There is an equilibrium of the continuous limit
order book market design with endogenous entry with play
as described above. The equilibrium number of fast trading
firms N� and the equilibrium bid-ask spread s� are uniquely
determined by the zero-profit conditions equations (5) and
(6). The structure of play in this equilibrium is identical to
that in the exogenous entry case, as characterized by
Proposition 1, but replacing the exogenous N trading firms
with the endogenous N� fast trading firms. Slow trading
firms play no role in equilibrium. The following three quan-
tities are equivalent in any equilibrium:

26. The assumption that N � 2 in equilibrium can be written as
cspeed <

1
2 linvest �

s�

2 . This is mild since linvest �
s�

2 is equal to the total prize in the
arms race.

27. We have assumed that all fast traders are equally fast and have the same
cost of speed. A simple way to capture the fact that some trading firms may have a
comparative advantage in speed technology is to allow the cost of speed to vary over
firms. Under this modification, the marginal fast trading firm earns zero profits,
while inframarginal trading firms earn strictly positive profits. With this modifi-
cation, the total sniping rents to trading firms remain equal to the total revenue
liquidity providers earn from investors via the positive bid-ask spread, and these
two quantities each strictly exceed the total equilibrium expenditure by trading
firms on speed technology.
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. The total rents to trading firms, ljump � PrðJ > s�

2 Þ�

EðJ � s�

2 jJ >
s�

2 Þ. That is, the sum of the value of all arbi-
trage opportunities that the snipers are racing to
capture.

. The total revenue liquidity providers earn from investors
via the positive bid-ask spread, linvest �

s�

2 .
. The total equilibrium expenditure by trading firms on

speed technology, N� � cspeed.

VI.E. Discussion of the Equilibrium

1. Welfare Costs of the Arms Race: A Prisoner’s Dilemma
among Trading Firms. The equilibrium derived above can be in-
terpreted as the outcome of a prisoner’s dilemma among trading
firms. To see this, compare the equilibrium outcome with endog-
enous entry to the equilibrium outcome with exogenous entry if
the exogenous number of trading firms is N� and their latency is
�slow. In both cases, the N� trading firms sort themselves into 1
liquidity provider and N� � 1 stale-quote snipers, and in both
cases the bid-ask spread, s�, is characterized by trading firms’
indifference between liquidity provision and stale-quote sniping.
The only difference is that now all trading firms—both the liquid-
ity provider and the snipers—respond to changes in y with a delay
of �slow instead of �fast. Investors still get to trade immediately and
still pay the same bid-ask spread cost of s�

2 , so their welfare is
unchanged. The welfare of the N� trading firms is strictly greater
though, since they no longer pay the cost of speed.

PROPOSITION 4 (Prisoner’s Dilemma). Consider the model of
Section VI.D modified so that the number of trading firms
is N�. Social welfare would be higher by N� � cspeed per unit
time if the N� trading firms could commit not to invest in the
speed technology, with the gains shared equally among the
N� trading firms. But each individual trading firm has a dom-
inant strategy incentive to deviate and invest in speed, so this
is not an equilibrium. The situation constitutes a prisoner’s
dilemma with social costs equal to the total expenditure on
speed.

As we will see below, frequent batch auctions resolve this
prisoner’s dilemma, and in a manner that allocates the welfare
savings to investors instead of trading firms.
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2. Connection to the Empirics: The Arms Race Is a ‘‘Constant’’.

PROPOSITION 5 (Comparative Statics of the Arms Race Prize). The
size of the prize in the arms race, ljump � PrðJ > s�

2 Þ�

EðJ � s�

2 jJ >
s�

2 Þ, has the following comparative statics:

(i) The size of the prize is increasing in the frequency of
jumps, ljump.

(ii) If jump distribution F0jump is a mean-preserving spread
of Fjump, then the size of the prize is strictly larger
under F0jump than Fjump.

(iii) The size of the prize is invariant to the cost of speed, cspeed.
(iv) The size of the prize is invariant to the speed of fast trad-

ing firms, �fast.
(v) The size of the prize is invariant to the difference in speed

between fast and slow trading firms, �.

Proposition 5 suggests that the HFT arms race is best under-
stood as an equilibrium constant of the continuous limit order
book—and thus helps make sense of our empirical results.
Specifically, suppose that speed technology improves each year,
and reinterpret the model so that cspeed is the cost of being at the
cutting edge of speed technology in the current year, �fast is the
speed at the cutting edge, and � is the speed differential between
the cutting edge and other trading firms. Under this interpreta-
tion, in equilibrium of our model, the speed with which informa-
tion ( y) is incorporated into prices (x) grows faster and faster each
year—as consistent with our findings in the correlation break-
down analysis (Figure III). And, arbitrage durations decline
each year—as consistent with our findings on the duration of
ES-SPY opportunities (Figure IV). However, the arms race
prize itself is unaffected by these advances in speed, which is
consistent with Figures V and VI because the total size of the
prize can be decomposed as per arbitrage profitability EðJ � s�

2 jJ
> s�

2 Þ times arbitrage frequency ljump � PrðJ > s�

2 Þ. What does affect
the size of the prize are the market volatility parameters, again
consistent with our findings in the arbitrage analysis.

3. Relationship to the Efficient Markets Hypothesis. It is in-
teresting to interpret the equilibrium derived above as it relates
to the efficient markets hypothesis.
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On the one hand, the market is highly efficient in the sense of
instantaneously incorporating news about y into the price of x.
Formally, the midpoint of the bid-ask spread for x is equal to fast
trading firms’ information about x’s fundamental value, yt��fast

, for
proportion one of the trading day.

On the other hand, a strictly positive volume of trade is con-
ducted at prices known by all trading firms to be stale. Formally,
the proportion of trade that is conducted at quotes that do not
contain yt��fast

is

ljump � PrðJ > s�

2 Þ �
N��1

N�

ljump � PrðJ > s�
2 Þ �

N��1
N� þ linvest

:

Hence, the market is extremely efficient in time space but not
in volume space: a lot of volume gets transacted at incorrect
prices. This volume is in turn associated with rents from symmet-
rically observed public information about securities’ prices, which
is in violation of the weak-form efficient markets hypothesis (see
Fama 1970).28

4. Role of HFTs. In equilibrium of our model, fast trading
firms endogenously serve two roles: liquidity provision and
stale-quote sniping. The liquidity provision role is useful to inves-
tors; the stale-quote sniping role is detrimental to investors be-
cause it increases the costs of liquidity provision.29

This distinction between roles is important to keep in mind
when interpreting the historical evidence on the effect of HFT on
liquidity. The rise of HFT over the past 15 years or so conflates
two distinct phenomena: the increased role of information tech-
nology (IT) in financial markets, and the speed race. The empir-
ical record is unambiguous that, overall, IT has improved
liquidity—see especially Hendershott, Jones, and Menkveld

28. The citation for the 2013 Nobel Prize in Economics asserted that asset prices
are predictable in the long run but ‘‘next to impossible to predict in the short run’’
(Economic Sciences Prize Committee 2013). Our empirical and theoretical results
show that in fact, prices are extremely easy to predict in the extremely short run.

29. In practice, and in richer models, HFTs serve roles beyond these two. For
instance, Clark-Joseph (2013) studies an HFT strategy that relates to the sophis-
ticated use of information technology to detect patterns in others’ trading activity
and trade in advance of large orders. Clark-Joseph (2013) argues that this strategy,
which he calls exploratory trading, is detrimental to investors, and it is clearly
distinct from stale-quote sniping.
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(2011), which uses a natural experiment to show that the transi-
tion from human-based liquidity provision to computer-based li-
quidity provision enhanced liquidity. This makes intuitive
economic sense, as IT has lowered costs in numerous sectors
throughout the economy. However, there is little support for
the proposition that the speed race per se has improved liquidity.
Moreover, in the time series of both bid-ask spreads over time
(Virtu 2014, p. 103) and the cost of executing large trades over
time (Angel, Harris and Spatt 2015, p. 23; Frazzini, Israel, and
Moskowitz 2012, table IV), it appears that most of the improve-
ments in liquidity associated with the rise of IT were realized in
the late 1990s and early to mid-2000s, well before the millisecond-
and microsecond-level speed race.

We emphasize that our results do not imply that on net HFT
has been negative for liquidity or social welfare. Our results say
that sniping is negative for liquidity and that the speed race is
socially wasteful. Frequent batch auctions preserve (in a sense,
enhance) the useful function served by HFTs—liquidity provision
and price discovery—while eliminating sniping and the speed race.

VII. Frequent Batch Auctions as a Market Design

Response

In this section we define the frequent batch auction market
design and show that it directly addresses the problems we have
identified with the continuous limit order book market design.

VII.A. Frequent Batch Auctions: Definition

Informally, frequent batch auctions are just like the contin-
uous limit order book but with two departures: (i) time is treated
as discrete, not continuous; and (ii) orders are processed in batch,
using a uniform-price auction, instead of serially in order of re-
ceipt. The remainder of this subsection defines frequent batch
auctions formally.30

The trading day is divided into equal-length discrete time
intervals, each of length � > 0. We refer to the parameter � as
the batch length and to the intervals as batch intervals. We

30. See also Budish, Cramton, andShim (2014), which provides additional prac-
tical implementation details.
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refer to a generic batch interval either using the interval, gener-
ically ð0; ��, or using the ending time, generically t.

At any moment in time during a batch interval, traders (i.e.,
investors or trading firms) may submit offers to buy and sell
shares of stock in the form of limit orders and market orders.
Just as in the continuous market, a limit order is a price-quantity
pair expressing an offer to buy or sell a specific quantity at a
specific price, and a market order specifies a quantity but not a
price.31 A single trader may submit multiple orders, which can be
interpreted as submitting a demand function or a supply function
(or both). Just as in the continuous market, traders may freely
modify or cancel their orders at any moment in time. Also, just
as in the continuous market, orders remain outstanding until
either executed or canceled; that is, if an order is not executed
in the batch at time t, it automatically carries over for
tþ �; tþ 2�; tþ 3�, etc.

At the end of each batch interval, the exchange batches all
outstanding orders—both new orders received during this inter-
val, and orders outstanding from previous intervals—and com-
putes the aggregate demand and supply functions out of all bids
and asks, respectively. If demand and supply do not intersect,
then there is no trade and all orders remain outstanding for the
next batch auction. If demand and supply do intersect, then the
market clears where supply equals demand, with all transactions
occurring at the same price—that is, at a ‘‘uniform price.’’ There
are two cases to consider. If demand and supply intersect hori-
zontally or at a point, this pins down a unique market-clearing
price p� and a unique maximum possible quantity q�. In this case,
offers to buy with bids strictly greater than p� and offers to sell
with asks strictly less than p� transact their full quantity at price
p�, whereas for bids and asks of exactly p� it may be necessary
to ration one side of the market to enable market clearing.32

31. We assume that there is a finite maximum allowable bid and minimum
allowable ask. A market order to buy q shares is then interpreted as a limit order
to buy q shares at the maximum allowable bid, and symmetrically for market orders
to sell. In practice, price circuit breakers might determine what constitutes these
maximum and minimum amounts (e.g., the most recently transacted price plus or
minus some specified percentage).

32. A potential reason to favor fine rather than coarse tick sizes is to reduce the
likelihood of ties and hence the amount of rationing. We also note that one of the
arguments against fine tick sizes in continuous markets—the explosion in message
traffic associated with traders outbidding each other by economically negligible
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For this rationing, we adopt a time-priority rule analogous to
current practice under the continuous market but treating time
as discrete: orders that have been left outstanding for a larger
(integer) number of batch intervals have higher priority, whereas
if two orders were submitted in the same batch interval they have
the same priority irrespective of the precise time they were sub-
mitted within that batch interval. If necessary to break ties be-
tween orders submitted during the same batch interval the
rationing is random (pro rata). If demand and supply intersect
vertically, this pins down a unique quantity q� and an interval
of market-clearing prices, ½p�L;p

�
H �. In this case, all offers to buy

with bids weakly greater than p�H and all offers to sell with asks
weakly lower than p�L transact their full quantity, and the price is
p�

L
þp�

H

2 .
Information policy details are as follows. After each auction

is computed all of the orders that were entered into the batch
auction, both outstanding orders from previous batch intervals
and new orders entered during the just-completed batch interval,
are displayed publicly. Also displayed are details of the auction
outcome: the supply and demand functions, and the market-
clearing price and quantity (or ‘‘no trade’’). Activity during the
batch interval is not displayed publicly during the batch interval;
that is, information is disseminated in discrete time. So, for the
time t auction, participants see all of the orders and auction in-
formation from the auctions at time t� �; t� 2�; t� 3�; . . .; but
they do not see new activity for the time t auction until after
the auction is completed. This information policy may sound dif-
ferent from current practice, but it is in fact closely analogous. In
the continuous market, new order book activity is first economi-
cally processed by the exchange (e.g., a new order is entered in the
book, or a new order trades against the book), and only then is the
order announced publicly (along with the updated state of the
book). Similarly, here, new order book activity is first economi-
cally processed by the exchange and only then announced pub-
licly; the only difference is that the economic processing occurs in

amounts—is less of an issue in discrete time. For these reasons, we conjecture that
the optimal tick size in a frequent batch auction is at least as fine as that in the
continuous limit order book. This is an open question for future research.
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discrete time, and hence the information dissemination occurs in
discrete time as well.33

To further clarify the relationship to the continuous limit
order book market design, it is helpful to discuss three scenarios.
A first scenario is that there is no new activity during the batch
interval; this case would be quite common if the batch interval is
short. In this case, all outstanding orders simply carry over to the
next batch interval, analogous to displayed liquidity in a contin-
uous limit order book. A second scenario is that a single investor
arrives during the batch interval and submits an order to buy
(analogously, to sell) at the best outstanding offer from the pre-
vious batch interval, that is, the frequent batch auction version of
the ask (analogously, bid). This scenario is also closely analogous
to the continuous market. The investor trades at the bid or ask,
and which order or orders get filled is based on our version of time
priority. A third scenario is that there is a large amount of new
activity in the batch interval; for example, there is a news event
and many trading algorithms are reacting at once. In this sce-
nario frequent batch auctions and the continuous limit order book
are importantly different: frequent batch auctions process all of
the new activity together in a uniform-price auction, at the end of
the interval, whereas the continuous market processes the new
activity serially in order of arrival.

VII.B. Why and How Frequent Batch Auctions Address the
Problems with Continuous Trading

Frequent batch auctions directly address the problems we
identified in Section VI with the continuous limit order book,
for two reasons.

First, and most obviously, discrete time reduces the value of
tiny speed advantages. To see this, consider a situation with two
trading firms, one who pays the cost cspeed and hence has latency
�fast, and one who does not pay the cost and hence has latency
�slow. In the continuous market, whenever there is a jump in y the
fast trading firm gets to act on it first. In the frequent batch

33. Displaying new activity during the batch interval would create at least two
problems. First, orders would be displayed that might never be intended to be eco-
nomically binding. For instance, a fast trader could place a large order to buy early
in the batch interval, to create the impression that there is a lot of demand to buy,
only to withdraw the buy order right at the end of the batch interval and instead
place a large order to sell. Second, an investor wishing to buy or sell at market could
not do so without displaying his intention publicly before his trade is executed.
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auction market, the fast trading firm’s speed advantage is only
relevant if the jump in y occurs at a very specific time in the batch
interval. Any jumps in y that occur during the window ð0; � � �slow�

are observed by both the slow and fast trading firm in time to
react for the batch auction at �. Similarly, any jumps in y that
occur during the window ð� � �fast; �� are observed by neither the
fast nor the slow trading firm in time for the auction at �. It is only
jumps that occur in a window of time of length � ¼ �slow � �fast,
taking place from ð� � �slow; � � �fast�, that create meaningful
asymmetric information between the fast and slow trader.
Hence, the proportion of the trading day during which the fast
trader’s speed advantage is relevant is reduced from 1 to �

�. For
instance, if the batch interval is 100 milliseconds and the speed
difference is 100 microseconds, the likelihood that the fast trad-
ing firm’s speed advantage results in economically relevant asym-
metric information is reduced by a factor of 1

1000. See Figure VII for
an illustration.

Second, and more subtly, the use of batch auctions elimina-
tes sniping. This is best explained with two examples. In the first
example, consider the model of Section VI.B, with N trading firms
exogenously in the market all equally fast. Consider a trading
firm providing liquidity. In the continuous market, every time
there is a jump in y, the liquidity provider is vulnerable to
being sniped. He submits a message to cancel his stale quotes,
but at the exact same time the other N – 1 trading firms submit
a message to snipe the stale quotes, and it is random who
gets processed first. So, if there is a large enough jump, he is
sniped with probability N�1

N . In the batch auction market, by con-
trast, a symmetrically informed liquidity provider is never
sniped.34 If y jumps, say from y to y > y, then the liquidity pro-
vider cancels his old quotes based on y and submits new quotes

34. That symmetrically informed liquidity providers are never sniped is an ar-
tifact of our stylized latency model. But consider as well the following more realistic
latency model, which leads to a substantively similar conclusion. Trading firms
observe each innovation in y with latency of �fast plus a uniform-random draw
from ½0; e�, where e > 0 represents the maximum difference in latency among trad-
ing firms in response to any particular signal. Now, a liquidity provider is vulner-
able to being sniped if (i) a jump in yoccurs during the interval ð� � �fast � e; � � �fastÞ,
and (ii) this jump occurs later than the liquidity provider’s own random draw from
½0; e�. The proportion of a given batch interval during which (i) and (ii) obtain is e

2�.
Whereas �, the difference in speed between a fast and a slow trader in practice might
be measured in milliseconds, the parameter e would in practice be measured in
microseconds. Hence, even for short batch intervals, the proportion e

2� is very
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based on y. The other trading firms may try to snipe the stale
quotes, say, by submitting orders to buy at the old ask price based
on y. But, because the liquidity provider’s canceled quotes are not
even entered into the next batch auction, the snipers are
irrelevant.35

In the second example, suppose as in the first that there are
N – 1 fast trading firms who seek to snipe stale quotes, but that
now the 1 trading firm providing liquidity is slow, not fast.
Moreover, suppose that there is a jump in y during the critical
interval ð� � �slow; � � �fast�, say, from y to y, where the fast trading
firms see the jump but the slow trading firm does not. In the
continuous market, if multiple fast traders attempt to exploit a
stale quote at essentially the same time, the exchange processes
whichever trader’s order reaches the exchange the fastest. In a
batch auction, by contrast, if multiple fast traders attempt to ex-
ploit a stale quote at essentially the same time—meaning in the
same batch interval—the trade goes to whichever trader offers
the best price. Serial processing implies speed-based competition,
whereas batch processing using a uniform-price auction allows

FIGURE VII

Illustration of How Discrete Time Reduces the Value of Tiny Speed Advantages

� denotes the length of the batch interval, �slow denotes the latency with
which slow traders observe information, and �fast denotes the latency with
which fast traders observe information. Any events that occur between time 0
and time � � �slow are observed by both slow and fast traders in time for the
next batch auction. Any events that occur between � � �fast and � are observed
by neither slow nor fast traders in time for the next batch auction. Only events
that occur between � � �slow and � � �fast create an asymmetry between slow and
fast traders, because fast traders observe them in time for the next batch auc-
tion but slow traders do not. This critical interval constitutes proportion �

� of the
trading day, where � � �slow � �fast. For more details see the text of Section
VII.B.

small. For example, if e is 10 microseconds and � is 100 milliseconds, then
e

2� ¼ 0:00005.
35. Observe that it is the combination of discrete-time and batch auctions that

eliminates sniping. Discrete time alone is insufficient: if new messages received
during the batch interval are processed serially at the end of the interval, for
instance in a random order, then a sniper’s request to buy at y may get serially
processed before the liquidity provider’s request to cancel his quotes at y.

THE HIGH-FREQUENCY TRADING ARMS RACE 1599

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/130/4/1547/1916146 by guest on 10 April 2024



for price competition. Equilibrium price competition among fast
traders then drives the price of x up to its new correct level,
namely, y. At any hypothetical market-clearing price p < y,
each fast trader strictly prefers to deviate and bid a tiny
amount more, so in any equilibrium the market-clearing price
in the auction is y.

Thus, frequent batch auctions eliminate sniping and the
arms race by transforming the nature of competition among trad-
ing firms: from competition on speed to competition on price. We
summarize this discussion as follows:

PROPOSITION 6 (Batching Eliminates Sniping and the Arms
Race). Consider the frequent batch auction market design
in the model of Section VI.D.

(i) The proportion of the trading day during which jumps in y
leave a slow liquidity provider vulnerable to being sniped
by a fast trader is �

�.
(ii) The proportion of the trading day during which jumps in y

leave a fast liquidity provider vulnerable to being sniped is 0.
(iii) If there are N � 2 fast traders exogenously in the market,

and there is a slow liquidity provider with a vulnerable stale
quote—that is, there is a jump in y during ð� � �slow; � � �fast�

such that y���fast
is either greater than the slow liquidity

provider’s ask or less than the bid—then Bertrand competi-
tion among the fast traders drives the batch auction price of
x to y���fast

. The slow liquidity provider transacts at y���fast
.

By contrast, in the continuous limit order book:

(i) The proportion of the trading day during which jumps in y
leave a slow liquidity provider vulnerable to being sniped
by a fast trader is 1.

(ii) A fast liquidity provider is sniped for proportion N�1
N of

sufficiently large jumps in y, where N is the number of
fast traders present in the market. This is the case even
though she observes jumps in y at exactly the same time
as the other N – 1 fast traders.

(iii) If there are N � 2 fast traders present in the market, and
there is a slow liquidity provider with a vulnerable stale
quote—that is, there is a jump in y at time t such that yt is
either greater than the slow liquidity provider’s ask or less
than the bid—then whichever of the N fast traders’ orders

QUARTERLY JOURNAL OF ECONOMICS1600

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/130/4/1547/1916146 by guest on 10 April 2024



is processed by the exchange first transacts at the stale
quote. The slow liquidity provider transacts at the stale
quote.

VII.C. Equilibrium of Frequent Batch Auctions

Section VII.B described why frequent batch auctions elimi-
nate sniping and the HFT arms race, by reducing the value of tiny
speed advantages and transforming competition on speed into
competition on price. In this section we study how this in turn
translates into equilibrium effects on bid-ask spreads, market
depth, and investment in speed. Following the analysis of
Section VI, we first consider the case of exogenous entry and
then consider endogenous entry.

1. Model. We study the equilibria of frequent batch auctions
using the model of Section VI.A that we used to study the contin-
uous limit order book, with one modification. In the model of
Section VI.A, investors arrive according to a Poisson process
with arrival rate linvest. In the context of the continuous
market, the Poisson process makes an implicit finiteness assump-
tion, because the probability that more than one investor arrives
at any instant is zero. Here, we need to make an explicit finite-
ness assumption. Specifically, we assume that investors continue
to arrive according to the Poisson process, and continue to be
equally likely to need to buy or sell a unit, but we assume that
the net demand of investors in any batch interval—number who
need to buy minus number who need to sell—is bounded.
Formally, let Að�Þ denote the random variable describing the
number of investors who arrive in a batch interval of length �,
and let Dð�Þ denote the random variable describing their net
demand. We assume that Dð�Þ is symmetric about zero and that
there exists a Q <1 such that the absolute value of Dð�Þ is
bounded by Q � 1. We view this assumption as innocuous so
long as Q is large relative to the standard deviation of the
Poisson arrival process,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�linvest

p
.

2. Exogenous Entry

We begin by considering the setting of Section VI.B in which
the number of trading firms is exogenously set to N � 2 and there
is no latency.
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Since all trading firms are equally fast, there is no sniping,
per the discussion in Section VII.B. Since all of the other sources
of costly liquidity provision are turned off, there exists an equi-
librium in which fast trading firms offer at least the maximum
necessary depth, Q, at zero bid-ask spread,36 and investors trade
at market in the batch auction immediately following their arri-
val. This equilibrium is essentially unique and obtains for any
batch interval � > 0.

PROPOSITION 7 (Equilibrium of Frequent Batch Auctions with
Exogenous Entry). Fix any batch interval � > 0 and any
number of trading firms N � 2. In any equilibrium of the
frequent batch auction market design with exogenous
entry, investors trade at market in the next batch auction
after their arrival, and the N trading firms collectively offer
at least the maximum necessary depth to satisfy investor
demand at zero bid-ask spread. As compared to the equilib-
rium of the continuous limit order book market, the equilib-
rium effects of frequent batch auctions are as follows:

(i) The bid-ask spread for the first-quoted unit is narrower: it
is 0 instead of the spread characterized by equation (3).

(ii) The market is deeper: the order book has the maximum
depth necessary to serve all investors at zero bid-ask
spread, whereas in the continuous limit order book, as
per the model considered in Section VI.B.4, the bid-ask
spread grows wider with the quantity traded.

This equilibrium highlights the central differences between
frequent batch auctions and the continuous limit order book.
There are no longer rents from symmetrically observed public
information; in equilibrium, trading firms earn zero rents.
Liquidity providers are no longer vulnerable to sniping; discrete
time affords liquidity providers an opportunity after each jump in
y to adjust their quotes to reflect the new public information.
Bertrand competition competes the bid-ask spread to zero, and
generates effectively infinite market depth, as we would have
expected given the model setup.

36. We maintain the convention from Section VI that it is possible to offer a zero
bid-ask spread. Formally, fast trading firms can be interpreted as offering to buy at
least Q units at price y� � e and sell at least Q units at price y� þ e, in the limit as
e!0þ.
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3. Endogenous Entry. In this section we consider the equilib-
rium of frequent batch auctions with endogenous entry. We show
that if the batch interval � is sufficiently large relative to � there is
an essentially unique equilibrium in which no trading firms pay
the cost cspeed to have latency �fast rather than �slow. Liquidity is
provided to investors by slow trading firms. As in the equilibrium
with exogenous entry, competition leads to a bid-ask spread of
zero and effectively infinite depth.

Suppose that slow trading firms in aggregate provide Q of
depth for x at zero bid-ask spread. That is, in the auction ending
at �, slow trading firms collectively offer to buy and sell Q units at
price y���slow

, where y���slow
represents the best available informa-

tion for a slow trader about the value of security x in the auction
ending at �.

A potential entrant considers whether to invest cspeed to be
fast, with the aim of sniping this Q of depth in the event that
there is a jump in y in the time interval ð� � �slow; � � �fast�, which
the entrant would observe and the slow trading firms providing
liquidity would not. If there are Q units of depth in the limit order
book, and there is, say, a positive jump, the entrant will wish to
buy all Q units at the stale ask prices. If the imbalance D of
investors—number of orders to buy minus orders to sell—is pos-
itive, then the amount that the fast trader can transact will be
smaller than Q by the amount D, because the investors will
outbid him for D of the Q units. On the other hand, if the imbal-
ance D is negative, the fast trader can transact not just the Q
units offered by the slow trading firms but can also satisfy the
imbalance. He can achieve this by submitting a large limit order
to buy at a price slightly larger than y���slow

, so that he purchases
all Q units at the ask of y���slow

as well as satisfies the D net
market orders to sell. Hence, the fast trader transacts an ex-
pected quantity of Q units in any batch interval where there is
an exploitable jump.

Let pjump denote the probability that there are one or more
jumps in y in the � interval, and let J0 denote the random variable
describing the total jump amount in a � interval, conditional on
there being at least one jump. Since the probability of multiple
jumps in a � interval is small, pjump&�ljump and EðJ0Þ&EðJÞ. The
fast trader’s expected profits from exploiting the slow liquidity
providers, on a per unit time basis, are thus pjump

� EðJ0Þ �Q& �
� �

ljumpEðJÞ �Q. Note that a difference versus the analogous expres-
sion in equation (2) is that the bid-ask spread is now zero, so any
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jump can be profitably exploited, in the full jump size amount.
The fast trading firm’s costs per unit time are cspeed. Hence, entry
as a fast trading firm sniping the slow trading firms is not optimal
if, using the approximations above,

�

�
� ljump � EðJÞ �Q < cspeed:ð8Þ

The fraction �
� is the proportion of time that the fast trader

sees jumps in y that the slow traders do not see in time (see
Figure VII), and these jumps occur at rate ljump. The LHS of
equation (8) is thus increasing in �, the fast trader’s speed advan-
tage, but decreasing in �, the batch interval. Intuitively, in a long
batch interval, most jumps occur at times where both the fast and
slow traders are able to react in time.

For any finite Q, equation (8) is satisfied for sufficiently large
�. Hence, any desired market depth can be provided by slow trad-
ing firms at zero cost if the batch interval � is sufficiently large.
Moreover, the maximum depth Q consistent with equation (8)
grows linearly with �, whereas the expected imbalance of investor
demand in a batch interval grows at rate

ffiffiffi
�
p

.
We summarize the derived equilibrium as follows.

PROPOSITION 8 (Equilibrium of Frequent Batch Auctions with
Endogenous Entry). Fix any batch interval � satisfying
pjump

� EðJ0Þ �Q < cspeed, the exact version of equation (8). In
any equilibrium of the frequent batch auction market
design with endogenous entry, investors trade at market in
the next batch auction after their arrival, and slow trading
firms collectively offer at least the maximum necessary depth
to satisfy investor demand at zero bid-ask spread. As com-
pared to the equilibrium of the continuous limit order book
market, the equilibrium effects of frequent batch auctions are
as follows:

(i) The bid-ask spread for the first-quoted unit is narrower: it

is 0 instead of
N��cspeed

linvest
.

(ii) The market is deeper: the order book has the maximum
depth necessary to serve all investors at zero bid-ask
spread, whereas in the continuous limit order book, as
per the extended model considered in Section VI.B, the
bid-ask spread grows wider with the quantity traded.

(iii) Social welfare:
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. Benefits: there is no more arms race. Trading firms
choose latency �slow rather than paying cspeed to have
latency �fast. This generates a welfare savings of N��
cspeed per unit time, where N� is the number of fast
trading firms in equilibrium of the continuous limit
order book.

. Costs: investors have to wait a positive amount of
time to complete their trade. Expected delay costs
are 1

�

R �
0 fdelaycostðxÞlinvestdx per unit time.

Notice that with respect to social welfare, frequent batch auc-
tions have both benefits and costs. The benefit is that they stop
the arms race in speed, which we showed in Proposition 4 can be
understood as a socially wasteful prisoner’s dilemma.37 The cost
is that investors have to wait a positive amount of time to trade,
so they incur delay costs. Intuition suggests that these delay costs
are likely to be negligible for the kinds of time intervals we are
discussing in this article, but since we lack a theoretical founda-
tion for where these delay costs come from, we do not reach a
definitive conclusion about social welfare in the proposition.38

In Online Appendix B.3.1, we use a combination of our ES-
SPY analysis and information from HFT public documents to cal-
ibrate equation (8). The goal of this exercise is not to determine
the optimal batch interval, but rather to get an extremely rough

37. Frequent batch auctions enhance liquidity, but since investors’ demand to
trade is inelastic in our model this enhanced liquidity does not translate into a
welfare gain. In a richer model with elastic demand to trade this would be an addi-
tional welfare benefit of frequent batch auctions.

38. The working paper version of this article considers the case where � fails
equation (8). In this case, it is no longer an equilibrium for liquidity to be provided by
trading firms who do not pay cspeed. Such trading firms would be too vulnerable to
sniping. Instead, liquidity is provided by a fast trading firm who pays cspeed, as in the
equilibrium of the continuous limit order book with endogenous entry. The key
difference is that the fast trading firm is no longer vulnerable to sniping, as per
Proposition 6. As a result, the equilibrium bid-ask spread is narrower and depth is
greater than in the continuous market with endogenous entry, though the spread is
wider and the market is less deep than in the case of � satisfying equation (8).
Equilibrium expenditure on speed also lies between the continuous market with
endogenous entry and frequent batch auctions with � satisfying equation (8). In the
limiting case of �!0þ we can reach a definitive welfare conclusion, because there
are benefits of frequent batch auctions—though not as large as in the case where �
satisfies equation (8)—and zero costs, because investor delay costs vanish as the
delay goes to zero.
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sense of magnitudes for how long a batch interval is long enough
to stop the HFT speed race. The parameter � is open to two po-
tential interpretations. One interpretation is that � represents
the year-on-year speed improvements of state-of-the-art HFTs;
in New York–Chicago trades like ES-SPY, the difference in one-
way latency between state-of-the-art in 2014 versus 2013 was less
than 100 microseconds. A second interpretation is that � repre-
sents the speed difference between HFTs and sophisticated algo-
rithmic trading firms that are not at the cutting edge of speed; in
New York–Chicago trades, this difference might be a few milli-
seconds. Under the first interpretation of �, when we plug in es-
timates for the other parameters in equation (8), we obtain a
lower bound for � on the order of 10–100 milliseconds. Under
the second interpretation of � we obtain a lower bound for � on
the order of 100 milliseconds to 1 second. Again, we make the
caveat that the exercise is rough and at best gives a sense of
magnitudes.

Online Appendix B.3.2 discusses a modification of the model
in which, under frequent batch auctions, information arrives in
discrete time rather than continuous time. The idea of this mod-
ification is that to the extent that information y about the value of
security x is information about other security prices, then the use
of frequent batch auctions would cause information to arrive in
discrete time at frequency �. Under this modification we obtain an
equilibrium analogous to one we just got but with a simpler and
less stringent sufficient condition under which frequent batch
auctions stop the speed race: � > �slow. Under this condition,
any time there is a jump in y both slow and fast traders observe
the jump in time for the next batch auction. This condition would
point to a lower bound on � on the order of 1–10 milliseconds.

VII.D. Discussion of the Equilibria

In this section, we make two sets of remarks concerning the
equilibria of frequent batch auctions.

First, we discuss how the various cases we studied corre-
spond to various potential implementations of frequent batch
auctions. The exogenous entry case, studied in Section VII.C, is
the right modeling device for scenarios in which the implementa-
tion of frequent batch auctions does not have a significant effect
on the overall level of investment in speed. This could correspond
to either a small-scale implementation of frequent batch auctions
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(e.g., a pilot test on a small number of stocks), which affects only a
small proportion of the prize in the speed race, or a larger-scale
implementation but in the short run during which speed invest-
ments are somewhat fixed. The endogenous entry case, studied in
the previous section, is more appropriate for scenarios in which
the implementation of frequent batch auctions would have a sig-
nificant impact on trading firms’ speed investment decisions. This
would correspond to a larger-scale implementation of frequent
batch auctions, in the medium to long run during which speed
investments are flexible.

Second, we discuss what our analysis does and does not tell
us about the choice of the batch interval. Both the discussion in
Section VII.B and the equilibrium analysis for the exogenous
entry case clarify that frequent batch auctions have important
benefits over continuous limit order books even for exceptionally
short �. In the model, these benefits—the elimination of sniping,
which in turn enhances liquidity—manifest for any � > 0. That is,
there is a discontinuous benefit from switching from continuous
time to discrete time. More practically, we think of this analysis
as pertaining to any � long enough to enable genuine batch pro-
cessing of orders by traders responding to the same stimulus with
essentially the same speed technology at essentially the same
time. A batch interval of 1 nanosecond technically constitutes
discrete time but would fail this practical test, because of random-
ness in computer response time, communications latencies, etc.

The discussion in Section VII.B and the equilibrium analysis
for the endogenous entry case then clarify that a longer batch
interval has an additional benefit over continuous limit order
books, namely that it stops the arms race. In the model of
Section VII.C, in which information arrives in continuous time,
the batch interval � should be long in relative terms compared to
the increments at stake in the speed race �. That is, the ratio �

�
should be sufficiently small, as per equation (8). In a modification
of the model in which information arrives in discrete time, as
discussed in Online Appendix B.3.2, the batch interval should
be long in absolute terms compared to the speed of slow traders,
�slow. The calibration exercise in Online Appendix B.3.1, although
extremely rough, suggests that a batch interval on the order of 10
milliseconds or 100 milliseconds may be sufficient to stop the
arms race by either measure.

Lengthening the batch interval may also have real costs,
which we capture in a stylized way as investor delay costs.
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Intuition suggests that such costs are small if the batch interval is
small, and vanish to zero as the batch interval goes to zero.39

VIII. Alternative Responses to the HFT Arms Race

Policy discussions about the HFT arms race have suggested
several alternative responses, most prominently Tobin taxes,
minimum resting times, message-to-trade ratios, and random
delays. In this section we briefly discuss each of these proposals.
We also discuss a recent private sector market design innovation
that is an alternative way to mitigate sniping.

VIII.A. Tobin Taxes

Tobin taxes (financial transactions taxes) were originally
proposed as ‘‘sand in the gears’’ to curb perceived excessive spec-
ulation and excessive volatility in foreign exchange markets (see
Tobin 1978; Summers and Summers 1989). More recently, Tobin
taxes have been proposed as a response to the HFT arms race by
Stiglitz (2014), among others,40 and adopted in fall 2013 by Italy.

Tobin taxes can be formally modeled in our framework as
follows. Introduce a Tobin tax of � > 0 per unit traded to the en-
dogenous entry model of Section VI.D. For expositional simplicity
assume that the tax is paid by the liquidity-taking side of the
trade. This tax has two effects. The direct effect is that it
simply increases the cost of trading by �. The indirect effect is
that by increasing the cost of trading the Tobin tax reduces the
attractiveness of sniping opportunities. This in turn reduces
entry by stale-quote snipers, which serves to reduce the equilib-
rium bid-ask spread and reduce equilibrium expenditure on
speed. In Online Appendix B.2.1 we show formally that the
Tobin tax (i) reduces investment in speed; (ii) reduces the snip-
ing-cost component of transactions costs; and (iii) increases

39. For example, suppose both options and stocks traded on frequent batch
auction markets. Then liquidity providers in the option market, who, if traded
against, seek to hedge in the underlying stock, would be exposed to delta risk for
the length of the batch interval.

40. The European Commission proposed a financial transactions tax in 2011. A
Frequently Asked Questions document available on the EC website has a question
‘‘Who is most irritated by these taxation plans?’’, the answer to which begins: ‘‘The
taxation plans are, of course, most irritating for high-frequency traders and for fund
and hedge fund managers whose business model is based on quick successions of
financial transactions. . .’’ See European Commission (2013).
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investors’ all in trading costs, that is, from the perspective of in-
vestors the cost of the tax outweighs the benefit from less sniping.
All three effects are monotonically increasing in �. For intuition,
consider the extreme case of a tax larger than the largest possible
sniping opportunity; in this case there is no sniping, no invest-
ment in speed, and the equilibrium cost to investors to trade is
simply the (very high) tax.

Hence, while the Tobin tax does address sniping and the HFT
arms race, it achieves these benefits at the expense of making
investors worse off.41 A second caveat is that the Tobin tax is a
relatively blunt instrument: to fully eliminate the incentive to
invest in speed, the Tobin tax needs to be larger than the maxi-
mum possible sniping opportunity. In our ES-SPY data, reducing
arms race profits by 90 percent would require a Tobin tax on the
order of 10 basis points, or roughly 10 times the average SPY bid-
ask spread in our data.42

Biais, Foucault, and Moinas (2015) argue for a tax directly on
speed technology as opposed to trading. Such a tax can be mod-
eled as increasing the cost of speed from cspeed to cspeed þ �speed,
with �speed the level of the tax. Equations (5)–(6) imply that such a
tax has no effect on investors’ trading costs, while equation (7)
implies that such a tax does reduce investment in speed. Hence,
in our model, the Biais, Foucault, and Moinas (2015) tax is con-
ceptually superior to the traditional Tobin tax. Again, though, the
magnitudes necessary to meaningfully impact the arms race are
large. To reduce arms race expenditures by 90 percent would re-
quire a tax of �speed ¼ 9cspeed, that is, a 900 percent tax on speed
expenditures.

41. Whether the Tobin tax enhances social welfare in our model depends on the
interpretation of the social value of the tax revenue that the tax generates. If one
assumes that a dollar of government revenue is as socially valuable as a dollar of
investor profit, then the Tobin tax increases welfare. If the government uses the
revenue from the Tobin tax to reduce other taxes that are distortionary, then the
social welfare benefit would be higher; if the government wastes the money, then
the net social welfare effect would be negative.

42. This assumes that the arbitrageur pays the tax twice per arbitrage oppor-
tunity, once in ES and once in SPY. The total tax paid by the arbitrageur is 20 basis
points.
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VIII.B. ‘‘Bans’’ on HFT: Message Ratios and Minimum Resting
Times

Two common characteristics of high-frequency trading strat-
egies are (i) that HFTs often cancel their orders soon after placing
them, and (ii) a high ratio of messages to completed trades.43 Not
coincidentally, two of the most widely discussed policy responses
to the HFT arms race are minimum resting times and message-
to-trade ratios. Minimum resting times prohibit canceling an
order too soon after initial submission; orders must rest in the
book for some minimum quantity of time, such as 500 millise-
conds. Message-to-trade ratios prohibit having a ratio of mes-
sages to completed trades that is above some maximum
threshold.

We wish to make two points about these proposals. First,
these proposals seem to misunderstand cause and effect. Our
model shows that both of these characteristics of HFT trading
strategies are part of equilibrium behavior under the continuous
limit order book. Liquidity providers cancel their orders and re-
place them with new orders every time there is a jump in y. Stale-
quote snipers cancel their orders whenever their attempt to snipe
does not win the race. See also Baruch and Glosten (2013) who
analyze additional reasons why the continuous market may lead
to what they call ‘‘flickering quotes.’’

Second, minimum resting times seem likely to exacerbate
rather than reduce sniping. Specifically, if there is a jump in y
that is within the resting time of the previous jump, then liquidity
providers with stale quotes in the book are simply prohibited from
attempting to cancel their stale quotes, ensuring that they will be
sniped with probability 1.

VIII.C. Random Message Delays

Random message delays are described by Harris (2012) as
follows: ‘‘Regulatory authorities could require that all exchanges
delay the processing of every posting, canceling, and taking in-
struction they receive by a random period of between 0 and 10
milliseconds.’’ The idea is that millisecond-level randomness
dwarfs any microsecond-level differences in speed among trading

43. The SEC’s Concept Release on Equity Market Structure listed these as two
of five common characteristics of HFT strategies, along with the use of speed tech-
nology, the use of colocation, and ending the trading day close to flat (Securities and
Exchange Commission 2010).
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firms responding to the same stimulus, which in turn reduces the
incentive to invest in tiny speed improvements. Although intui-
tively appealing, there are two important concerns with random
message delays. First, random message delays do not address
sniping. If a liquidity provider attempts to cancel a stale quote,
and other trading firms attempt to snipe a stale quote, the
random message delay just adds an additional source of random-
ness regarding whose request is processed first. If there are N
firms approximately equally fast, each of whom send one mes-
sage, and the random message delay is large relative to any dif-
ferences in speed among the N firms, then the liquidity provider
will get sniped with probability of approximately N�1

N , just as in
our model without random delay.

Second, random message delays incentivize trading firms to
submit redundant messages. Consider our model of Section VI.B,
modified to include a random message delay that is a uniform
random draw from ½0; e�. Suppose there is a jump in y that
causes a liquidity provider’s quotes to become stale. Then each
of the other N – 1 trading firms has incentive to submit not just
one message to snipe, but many, because each message to snipe is
like a lottery ticket hoping to get a short random delay. Similarly,
the liquidity provider has incentive to submit not just one but
many messages to cancel their stale quote, again in the hopes
that one of these messages will get processed with delay 0.44

We show both of these points formally in Online Appendix
B.2.2. Adding a random message delay to our model of the con-
tinuous limit order book with endogenous entry in Section VI.D
has no effect on sniping, equilibrium expenditure on speed, or the
bid-ask spread; the only effect is to encourage redundant message
traffic.

VIII.D. Asymmetric Delay to Immediately Executable Orders

The previous section discussed why random message delays
do not address sniping and encourage redundant message traffic.
Consider, however, the following alternative, which captures the

44. A natural idea in response to this concern is to place a cap on the number of
redundant messages any one firm can send, for instance, a cap of one message per
firm. However, such a cap would at best have no effect on sniping and could actually
exacerbate sniping. The reason is that the cap would certainly bind for liquidity
providers, whose message to cancel is tied to a specific quote of theirs in the book,
whereas stale-quote snipers could circumvent a message cap by using multiple
trading accounts.
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key idea of recent market design innovations by TMX and IEX:
apply a deterministic but asymmetric delay of � > 0 only to im-
mediately executable orders.45,46 If immediately executable
orders are delayed but posting and canceling messages are not,
then, when there is a jump in y, liquidity providers have a head
start over stale-quote snipers in the race to react. In the model of
Section VI.D, it is straightforward to see that if the delay � ex-
ceeds the difference in speed � between fast and slow trading
firms, then slow trading firms can provide liquidity without risk
of being sniped by fast trading firms. Recent work by Baldauf and
Mollner (2014) shows this formally.

Hence, in our model of Section VI, the asymmetric delay
eliminates sniping and stops the arms race. However, there are
two important disadvantages of the asymmetric delay relative to
frequent batch auctions, each of which can be captured with
simple extensions of our model. Both disadvantages stem from
the fact that the continuous limit order book with asymmetric
delay is still a continuous-time serial-process market design,
and as a result cannot eliminate the incentive to be a tiny bit
faster than the competition.

45. The key details of the TMX Group’s proposed TSX Alpha Exchange are as
follows. There is an order type called Post Only that can be entered and canceled
without delay. The two requirements on Post Only orders are (i) that they be nonex-
ecutable at the time of submission, and (ii) that their quantity exceed a minimum
threshold. All other orders and cancels are subject to a delay, called a speed bump.
The length of the delay is random, which our analysis in Section VIII.C suggests
may not be wise. For more details on the proposed rules see http://www.osc.gov.on.
ca/documents/en/Marketplaces/alpha-exchange_20141106_amd-request-for-com-
ments.pdf.

46. The key details of the IEX Alternative Trading System are as follows (see
IEX Group 2014). There is a 350-microsecond delay applied symmetrically to all
orders and cancels. In addition, there is price-sliding logic that adjusts stale quotes
in the order book based on updates to the National Best Bid and Offer (NBBO)
coming from otherUSequity exchanges. The rule is that any order present in the
IEX limit order book that is priced more aggressively than the NBBO midpoint
slides to the NBBO midpoint. Since IEX receives updates to the NBBO faster
than the 350-microsecond delay (latency in the NBBO is on the order of 200 micro-
seconds, given the geographical distances between the different exchanges’ data
centers in New Jersey), the effect of the combination of the symmetric speed bump
and price-sliding logic is economically similar to the effect of an asymmetric delay.
Formally, if innovations in y are interpreted as innovations in the NBBO, then the
IEX market design eliminates sniping in our model just as does the asymmetric
delay.Apotential concern about this market design is that it only mitigates sniping
to the extent that prices are discovered via the NBBO exchanges rather than IEX.
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First, the asymmetric delay does not address the race to the
top of the book; see Yao and Ye (2014) and Moallemi (2014) for
analyses of this component of the speed race. Formally, consider a
modification to the model of Section VI in which trades can only
occur at prices on a discrete price grid, with the increment
denoted � > 0. Suppose that � is large relative to the bid-ask
spread that would obtain in the absence of a price constraint;
this is a common case in practice (Yao and Ye 2014). In this
case, in the continuous market, trading firms strictly prefer the
role of liquidity provider to the role of stale-quote sniper (see note
19). In equilibrium, after jumps in y, there are races both to snipe
stale quotes and to be at the top of the queue to provide liquidity
at the new price level. Frequent batch auctions address both
races. The advantage a fast trading firm has over a slow trading
firm with respect to obtaining priority in the order book is pro-
portional to �

�,
47 just as is the advantage a fast trading firm has

over a slow trading firm with respect to sniping stale quotes. By
contrast, the asymmetric delay has zero effect on the race to the
top of the book.

Second, the asymmetric delay does not transform competi-
tion on speed into competition on price if there are quotes in the
book that become stale based on public information and are not
updated within �; for example, nonmarketable limit orders sub-
mitted by participants more than � slower than the cutting edge.
Formally, consider a modification of our model in Section VI in
which some investors have latency �slower > � and attempt to sat-
isfy their demand to trade by buying at the bid or selling at the
ask. This behavioral type captures the idea that some investors
attempt to trade without paying the bid-ask spread even though
their monitoring technology is meaningfully slower than the cut-
ting edge. Suppose a behavioral type’s quote becomes stale based
on a sufficiently large jump in the public signal y. In the contin-
uous limit order book with asymmetric delay, the stale quote in-
duces a race to snipe; whichever trading firm reacts first gets to
trade at the stale price. In the frequent batch auction market the
stale quote induces competition on price and will get filled at a
price determined by the batch auction based on the new public

47. The fast trading firm obtains time priority in the book over the slow trading
firm only if their order reaches the order book in an earlier batch interval. Hence,
just as depicted in Figure VII, it is only jumps in y that occur during a �

� proportion of
the batch interval that give a time priority advantage to the fast trading firm.
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information rather than at the stale price. Put differently, non-
HFTs can provide liquidity in frequent batch auctions without
getting sniped, even if they are more than � slower than the
cutting edge, whereas they would get sniped by HFTs in the con-
tinuous limit order book with asymmetric delay.

IX. Computational Advantages of Discrete-Time Trading

Our theoretical argument for frequent batch auctions as a
response to the HFT arms race focuses on sniping, liquidity,
and socially wasteful expenditure on speed. Practitioners and
policy makers have argued that another important cost of the
HFT arms race is that it is destabilizing for financial markets,
making the market more vulnerable to extreme events such as
the Flash Crash.48 Although an analysis of the effect of frequent
batch auctions on market stability is beyond the scope of the pre-
sent article, here we discuss several computational simplicity ad-
vantages of discrete-time trading over continuous-time trading.
As we note in the conclusion, we think that market stability is an
important topic for future research.

First, frequent batch auctions are computationally simple for
exchanges. Uniform-price auctions are fast to compute,49 and

48. Duncan Niederauer, former CEO of NYSE Euronext, testified to Congress
on market structure issues including the Flash Crash that ‘‘there is reason for
Congress and the SEC to be concerned that without action, we leave ourselves
open to a greater loss of investor confidence and market stability. To solve the
problem, policymakers should focus on establishing fairer and more transparent
equity markets, as well as a more level playing field among trading centers and
investors’’ (Niederauer 2012). See also the report on the regulatory response to the
Flash Crash prepared by the Joint CFTC-SEC Advisory Committee on Emerging
Regulatory Issues (SEC and CFTC 2010), the CFTC Concept Release on Risk
Controls and System Safeguards for Automated Trading (Commodity Futures
Trading Commission 2013), and policy papers by Haldane (2011) and Farmer and
Skouras (2012).

49. Formally, the processing time of the uniform-price auction is Oðn log nÞ,
where n is the number of orders. Sorting bids and asks to compute the demand
and supply curve is Oðn log nÞ (Cormen et al. 2009), and then walking down the
demand curve and up the supply curve to compute the market clearing price is O(n).
We also ran some simple computational simulations of uniform-price auctions,
using randomly generated bids and asks, on an ordinary laptop using C++. We
found that a uniform-price auction with 250,000 orders—the rate of messages per
second during the flash crash according to a Nanex analysis (2011)—cleared in
about 10 milliseconds in this simple computational environment.
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exchange computers can be allocated a discrete block of time
during which to perform this computation.50 By contrast, in the
continuous limit order book market design, exchange computers
are not allocated a block of time during which to perform order
processing, but instead process orders and other messages serially
on arrival. While processing any single order is computationally
trivial, even a trivial operation takes strictly positive computa-
tional time, which implies that during surges of activity there
will be backlog and processing delay. This backlog can lead to con-
fusion for trading algorithms, which are temporarily left uncertain
about the state of their own orders. Moreover, backlog is most
severe at times of especially high market activity, when reliance
on low-latency information is also at its highest; Facebook’s initial
public offering on NASDAQ and the Flash Crash are salient
examples (Nanex 2011; Jones 2013; Strasburg and Bunge 2013).

A second computational simplicity benefit of frequent batch-
ing is that it gives algorithmic traders a discrete block of time
between when they receive a message—for example, a trade no-
tification or an order book update—and by when they must make
a decision, for example, submit a new order. In the continuous
market, by contrast, trading algorithms are incentivized to react
as fast as possible whenever they receive a new piece of informa-
tion. This means, first, that trading algorithms are incentivized to
trade off ‘‘smarts’’ for speed, that is, to make trading decisions
based on only partial information and with only simple economic
logic, since incorporating additional information and using more
complicated economic logic each take time. And, second, that
trading algorithms are incentivized to trade off error and risk
checking for speed, because error and risk checking each take
time and even tiny speed advantages can matter.51 While discrete
time certainly will not prevent trading firms from making pro-
gramming errors (e.g., the Knight Capital incident of August
2012, see Strasburg and Bunge 2012), it does reduce the incentive
to sacrifice robustness for speed.

50. For instance, with a 100 millisecond batch interval, the first 10 milliseconds
of each batch interval could be allocated to the exchange computers for computing
and reporting outcomes from the previous batch interval.

51. The sociologist Donald MacKenzie (2014) provides several detailed exam-
ples of this trade off between code robustness and speed described to him in inter-
views with high-frequency traders. For example, one trader is quoted ‘‘There are
rules you need to follow to write fast code. Don’t touch the kernel. Don’t touch main
memory . . . . Don’t branch.’’

THE HIGH-FREQUENCY TRADING ARMS RACE 1615

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/130/4/1547/1916146 by guest on 10 April 2024



Third, discrete time simplifies the market paper trail for reg-
ulators and other market observers. In the continuous-time
market, figuring out the precise sequence of market events is
difficult to impossible. Exchange timestamps are always some-
what noisy, due to various processing delays including backlog,
which means that the sequence of time stamps across exchanges
may not reflect the actual sequence of events. Further complicat-
ing the paper trail is the need to adjust for relativity—even per-
fect time stamps do not reveal the sequence of events because the
sequence of events depends on the location of the observer. In the
discrete-time market the paper trail is much simpler: the regula-
tory authorities observe everything that happens at time t, tþ �,
tþ 2�, etc. As long as the batch interval � is long relative to the
imprecision in time stamps and latency across exchanges, the
complexities that affect the continuous market’s paper trail
become nonissues. As evidence for the potential importance of a
simple paper trail, consider that it took months of analysis for
regulators to understand the basic sequence of events that caused
the Flash Crash (SEC and CFTC 2010), and even today our un-
derstanding of that day’s events remains incomplete.

Last, discrete time makes it technologically possible to dis-
seminate public information symmetrically. In the continuous-
time market, it is technologically difficult to disseminate
information in such a way that all market participants who
wish to receive it do so at the same time. Two recent examples
that have attracted considerable attention are the SEC’s diffi-
culty with symmetric dissemination of corporate filings (Rogers,
Skinner, and Zechman 2014) and the discrepancy in latency be-
tween direct exchange feeds and the SIP feed (Ding, Hanna, and
Hendershott 2014; see also Lewis 2014). Moreover, even if infor-
mation could be disseminated in such a way that all market par-
ticipants who wish to receive it do so at exactly the same time, our
model in Section VI shows that, economically, the continuous-
time market processes their responses to the information as if
the information were asymmetric. In contrast, in the discrete-
time market it is technologically simple both to disseminate in-
formation to many participants at the same time and to process
their responses at the same time.

In a sense, continuous-time markets implicitly assume that
computers and communications are infinitely fast. Computers are
fast but not infinitely so. Discrete time respects the limits of
computers.

QUARTERLY JOURNAL OF ECONOMICS1616

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/130/4/1547/1916146 by guest on 10 April 2024



X. Conclusion

This article argues that the continuous limit order book is a
flawed market design and proposes a new market design, fre-
quent batch auctions, which directly addresses the flaw. To
recap, our basic argument is as follows. First, we show empiri-
cally that the continuous limit order book market design does not
really ‘‘work’’ in continuous time: correlations completely break
down at high-frequency time scales, which leads to obvious me-
chanical arbitrage opportunities. The time series evidence sug-
gests that the arms race profits should be thought of more as a
constant of the market design, rather than as a prize that is com-
peted away over time. Next, we build a simple theoretical model
guided by these empirical facts. We show that the mechanical
arbitrage opportunities we observed in the data are in a sense
‘‘built in’’ to the market design: even symmetrically observed
public information creates arbitrage rents. These rents come at
the expense of liquidity provision, as measured by both bid-ask
spreads and market depth, and induce a never-ending arms race
for speed. Last, we show that frequent batch auctions eliminate
the mechanical arbitrages and the HFT arms race, which in turn
enhances liquidity and, unless investors are extremely impatient,
improves social welfare. Discrete time makes tiny speed advan-
tages orders of magnitude less valuable, and the auction trans-
forms competition on speed into competition on price.

There are several important directions for future research.
First, our model is extremely stylized. This level of abstraction is
appropriate both for making stark the key design flaw of the con-
tinuous limit order book and for articulating why frequent batch
auctions directly address the flaw. However, future analysis of
frequent batch auctions should be conducted in a richer modeling
environment, ideally including features such as asymmetric in-
formation, inventory management considerations, multileg
trades, and investors needing to trade large quantities over
time. Among other things, such a model would help shed light
on the optimal batch interval.

A second area for future research is the nature of competition
among exchanges. Suppose that one or more exchanges adopt
frequent batch auctions while other exchanges continue to use
continuous trading: what is the equilibrium? Can an entrant ex-
change that adopts frequent batch auctions attract market share?
We note that these questions may also be related to the analysis
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of the optimal batch interval. They may have implications for
regulatory policy as well.

A third topic for future research is the effect of frequent batch
auctions on market stability. In Section IX we discussed several
computational advantages of discrete-time trading over continu-
ous-time trading. For example, the market paper trail becomes
simpler because issues that complicate the paper trail in contin-
uous time—exchange and communication latency, clock synchro-
nization, the discrepancy between direct feeds and the SIP feed,
relativity—are nonissues in discrete time. However, we caution
that this discussion was necessarily informal and speculative.
Further research is needed, especially to understand whether
and to what extent computational simplicity reduces the market’s
vulnerability to the kinds of extreme events at the center of the
debate on the effect of HFT on market stability.
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